Evaluate
\frac{9}{4}=2.25
Factor
\frac{3 ^ {2}}{2 ^ {2}} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
\frac{\left(\frac{41}{40}-\frac{1}{2}\right)^{2}}{\frac{7}{2}\times \frac{3}{20}}+\frac{3}{10}\times \frac{23}{2^{2}}
Subtract \frac{3}{8} from \frac{7}{5} to get \frac{41}{40}.
\frac{\left(\frac{21}{40}\right)^{2}}{\frac{7}{2}\times \frac{3}{20}}+\frac{3}{10}\times \frac{23}{2^{2}}
Subtract \frac{1}{2} from \frac{41}{40} to get \frac{21}{40}.
\frac{\frac{441}{1600}}{\frac{7}{2}\times \frac{3}{20}}+\frac{3}{10}\times \frac{23}{2^{2}}
Calculate \frac{21}{40} to the power of 2 and get \frac{441}{1600}.
\frac{\frac{441}{1600}}{\frac{21}{40}}+\frac{3}{10}\times \frac{23}{2^{2}}
Multiply \frac{7}{2} and \frac{3}{20} to get \frac{21}{40}.
\frac{441}{1600}\times \frac{40}{21}+\frac{3}{10}\times \frac{23}{2^{2}}
Divide \frac{441}{1600} by \frac{21}{40} by multiplying \frac{441}{1600} by the reciprocal of \frac{21}{40}.
\frac{21}{40}+\frac{3}{10}\times \frac{23}{2^{2}}
Multiply \frac{441}{1600} and \frac{40}{21} to get \frac{21}{40}.
\frac{21}{40}+\frac{3}{10}\times \frac{23}{4}
Calculate 2 to the power of 2 and get 4.
\frac{21}{40}+\frac{69}{40}
Multiply \frac{3}{10} and \frac{23}{4} to get \frac{69}{40}.
\frac{9}{4}
Add \frac{21}{40} and \frac{69}{40} to get \frac{9}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}