Evaluate
\frac{12}{5}=2.4
Factor
\frac{2 ^ {2} \cdot 3}{5} = 2\frac{2}{5} = 2.4
Share
Copied to clipboard
\frac{\frac{14}{10}+\frac{3}{10}-\frac{\frac{4}{15}}{\frac{5}{6}}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Least common multiple of 5 and 10 is 10. Convert \frac{7}{5} and \frac{3}{10} to fractions with denominator 10.
\frac{\frac{14+3}{10}-\frac{\frac{4}{15}}{\frac{5}{6}}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Since \frac{14}{10} and \frac{3}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{17}{10}-\frac{\frac{4}{15}}{\frac{5}{6}}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Add 14 and 3 to get 17.
\frac{\frac{17}{10}-\frac{4}{15}\times \frac{6}{5}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Divide \frac{4}{15} by \frac{5}{6} by multiplying \frac{4}{15} by the reciprocal of \frac{5}{6}.
\frac{\frac{17}{10}-\frac{4\times 6}{15\times 5}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Multiply \frac{4}{15} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{17}{10}-\frac{24}{75}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Do the multiplications in the fraction \frac{4\times 6}{15\times 5}.
\frac{\frac{17}{10}-\frac{8}{25}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Reduce the fraction \frac{24}{75} to lowest terms by extracting and canceling out 3.
\frac{\frac{85}{50}-\frac{16}{50}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Least common multiple of 10 and 25 is 50. Convert \frac{17}{10} and \frac{8}{25} to fractions with denominator 50.
\frac{\frac{85-16}{50}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Since \frac{85}{50} and \frac{16}{50} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{69}{50}}{\frac{1}{2}+\frac{1}{5}-\frac{1}{8}}
Subtract 16 from 85 to get 69.
\frac{\frac{69}{50}}{\frac{5}{10}+\frac{2}{10}-\frac{1}{8}}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{1}{5} to fractions with denominator 10.
\frac{\frac{69}{50}}{\frac{5+2}{10}-\frac{1}{8}}
Since \frac{5}{10} and \frac{2}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{69}{50}}{\frac{7}{10}-\frac{1}{8}}
Add 5 and 2 to get 7.
\frac{\frac{69}{50}}{\frac{28}{40}-\frac{5}{40}}
Least common multiple of 10 and 8 is 40. Convert \frac{7}{10} and \frac{1}{8} to fractions with denominator 40.
\frac{\frac{69}{50}}{\frac{28-5}{40}}
Since \frac{28}{40} and \frac{5}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{69}{50}}{\frac{23}{40}}
Subtract 5 from 28 to get 23.
\frac{69}{50}\times \frac{40}{23}
Divide \frac{69}{50} by \frac{23}{40} by multiplying \frac{69}{50} by the reciprocal of \frac{23}{40}.
\frac{69\times 40}{50\times 23}
Multiply \frac{69}{50} times \frac{40}{23} by multiplying numerator times numerator and denominator times denominator.
\frac{2760}{1150}
Do the multiplications in the fraction \frac{69\times 40}{50\times 23}.
\frac{12}{5}
Reduce the fraction \frac{2760}{1150} to lowest terms by extracting and canceling out 230.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}