Evaluate
-\frac{\sqrt{14}}{12}\approx -0.311804782
Share
Copied to clipboard
\left(\frac{7}{4}-\frac{8}{4}\right)\sqrt{\frac{5}{3}-\frac{1}{9}}
Convert 2 to fraction \frac{8}{4}.
\frac{7-8}{4}\sqrt{\frac{5}{3}-\frac{1}{9}}
Since \frac{7}{4} and \frac{8}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{4}\sqrt{\frac{5}{3}-\frac{1}{9}}
Subtract 8 from 7 to get -1.
-\frac{1}{4}\sqrt{\frac{15}{9}-\frac{1}{9}}
Least common multiple of 3 and 9 is 9. Convert \frac{5}{3} and \frac{1}{9} to fractions with denominator 9.
-\frac{1}{4}\sqrt{\frac{15-1}{9}}
Since \frac{15}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{4}\sqrt{\frac{14}{9}}
Subtract 1 from 15 to get 14.
-\frac{1}{4}\times \frac{\sqrt{14}}{\sqrt{9}}
Rewrite the square root of the division \sqrt{\frac{14}{9}} as the division of square roots \frac{\sqrt{14}}{\sqrt{9}}.
-\frac{1}{4}\times \frac{\sqrt{14}}{3}
Calculate the square root of 9 and get 3.
\frac{-\sqrt{14}}{4\times 3}
Multiply -\frac{1}{4} times \frac{\sqrt{14}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-\sqrt{14}}{12}
Multiply 4 and 3 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}