Solve for Δ
\Delta =\frac{19}{15}\approx 1.266666667
Share
Copied to clipboard
\frac{\frac{7}{12}-\frac{3}{12}}{\frac{5}{12}}-\left(\Delta -\frac{2}{3}\right)=\frac{1}{5}
Least common multiple of 12 and 4 is 12. Convert \frac{7}{12} and \frac{1}{4} to fractions with denominator 12.
\frac{\frac{7-3}{12}}{\frac{5}{12}}-\left(\Delta -\frac{2}{3}\right)=\frac{1}{5}
Since \frac{7}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{12}}{\frac{5}{12}}-\left(\Delta -\frac{2}{3}\right)=\frac{1}{5}
Subtract 3 from 7 to get 4.
\frac{\frac{1}{3}}{\frac{5}{12}}-\left(\Delta -\frac{2}{3}\right)=\frac{1}{5}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{1}{3}\times \frac{12}{5}-\left(\Delta -\frac{2}{3}\right)=\frac{1}{5}
Divide \frac{1}{3} by \frac{5}{12} by multiplying \frac{1}{3} by the reciprocal of \frac{5}{12}.
\frac{1\times 12}{3\times 5}-\left(\Delta -\frac{2}{3}\right)=\frac{1}{5}
Multiply \frac{1}{3} times \frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{15}-\left(\Delta -\frac{2}{3}\right)=\frac{1}{5}
Do the multiplications in the fraction \frac{1\times 12}{3\times 5}.
\frac{4}{5}-\left(\Delta -\frac{2}{3}\right)=\frac{1}{5}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
\frac{4}{5}-\Delta -\left(-\frac{2}{3}\right)=\frac{1}{5}
To find the opposite of \Delta -\frac{2}{3}, find the opposite of each term.
\frac{4}{5}-\Delta +\frac{2}{3}=\frac{1}{5}
The opposite of -\frac{2}{3} is \frac{2}{3}.
\frac{12}{15}-\Delta +\frac{10}{15}=\frac{1}{5}
Least common multiple of 5 and 3 is 15. Convert \frac{4}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{12+10}{15}-\Delta =\frac{1}{5}
Since \frac{12}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{22}{15}-\Delta =\frac{1}{5}
Add 12 and 10 to get 22.
-\Delta =\frac{1}{5}-\frac{22}{15}
Subtract \frac{22}{15} from both sides.
-\Delta =\frac{3}{15}-\frac{22}{15}
Least common multiple of 5 and 15 is 15. Convert \frac{1}{5} and \frac{22}{15} to fractions with denominator 15.
-\Delta =\frac{3-22}{15}
Since \frac{3}{15} and \frac{22}{15} have the same denominator, subtract them by subtracting their numerators.
-\Delta =-\frac{19}{15}
Subtract 22 from 3 to get -19.
\Delta =\frac{19}{15}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}