Evaluate
-\frac{23}{4}=-5.75
Factor
-\frac{23}{4} = -5\frac{3}{4} = -5.75
Share
Copied to clipboard
\frac{\frac{7}{12}+\frac{9}{12}}{-\frac{8}{27}}+\left(2-\frac{3\times 5+2}{5}\right)\times \frac{25}{28}
Least common multiple of 12 and 4 is 12. Convert \frac{7}{12} and \frac{3}{4} to fractions with denominator 12.
\frac{\frac{7+9}{12}}{-\frac{8}{27}}+\left(2-\frac{3\times 5+2}{5}\right)\times \frac{25}{28}
Since \frac{7}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{16}{12}}{-\frac{8}{27}}+\left(2-\frac{3\times 5+2}{5}\right)\times \frac{25}{28}
Add 7 and 9 to get 16.
\frac{\frac{4}{3}}{-\frac{8}{27}}+\left(2-\frac{3\times 5+2}{5}\right)\times \frac{25}{28}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
\frac{4}{3}\left(-\frac{27}{8}\right)+\left(2-\frac{3\times 5+2}{5}\right)\times \frac{25}{28}
Divide \frac{4}{3} by -\frac{8}{27} by multiplying \frac{4}{3} by the reciprocal of -\frac{8}{27}.
\frac{4\left(-27\right)}{3\times 8}+\left(2-\frac{3\times 5+2}{5}\right)\times \frac{25}{28}
Multiply \frac{4}{3} times -\frac{27}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{-108}{24}+\left(2-\frac{3\times 5+2}{5}\right)\times \frac{25}{28}
Do the multiplications in the fraction \frac{4\left(-27\right)}{3\times 8}.
-\frac{9}{2}+\left(2-\frac{3\times 5+2}{5}\right)\times \frac{25}{28}
Reduce the fraction \frac{-108}{24} to lowest terms by extracting and canceling out 12.
-\frac{9}{2}+\left(2-\frac{15+2}{5}\right)\times \frac{25}{28}
Multiply 3 and 5 to get 15.
-\frac{9}{2}+\left(2-\frac{17}{5}\right)\times \frac{25}{28}
Add 15 and 2 to get 17.
-\frac{9}{2}+\left(\frac{10}{5}-\frac{17}{5}\right)\times \frac{25}{28}
Convert 2 to fraction \frac{10}{5}.
-\frac{9}{2}+\frac{10-17}{5}\times \frac{25}{28}
Since \frac{10}{5} and \frac{17}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{9}{2}-\frac{7}{5}\times \frac{25}{28}
Subtract 17 from 10 to get -7.
-\frac{9}{2}+\frac{-7\times 25}{5\times 28}
Multiply -\frac{7}{5} times \frac{25}{28} by multiplying numerator times numerator and denominator times denominator.
-\frac{9}{2}+\frac{-175}{140}
Do the multiplications in the fraction \frac{-7\times 25}{5\times 28}.
-\frac{9}{2}-\frac{5}{4}
Reduce the fraction \frac{-175}{140} to lowest terms by extracting and canceling out 35.
-\frac{18}{4}-\frac{5}{4}
Least common multiple of 2 and 4 is 4. Convert -\frac{9}{2} and \frac{5}{4} to fractions with denominator 4.
\frac{-18-5}{4}
Since -\frac{18}{4} and \frac{5}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{23}{4}
Subtract 5 from -18 to get -23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}