Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(68-4\sqrt{17}\right)^{2}}{17^{2}}+4^{2}
To raise \frac{68-4\sqrt{17}}{17} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(68-4\sqrt{17}\right)^{2}}{17^{2}}+16
Calculate 4 to the power of 2 and get 16.
\frac{\left(68-4\sqrt{17}\right)^{2}}{17^{2}}+\frac{16\times 17^{2}}{17^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{17^{2}}{17^{2}}.
\frac{\left(68-4\sqrt{17}\right)^{2}+16\times 17^{2}}{17^{2}}
Since \frac{\left(68-4\sqrt{17}\right)^{2}}{17^{2}} and \frac{16\times 17^{2}}{17^{2}} have the same denominator, add them by adding their numerators.
\frac{4624-544\sqrt{17}+16\left(\sqrt{17}\right)^{2}}{17^{2}}+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(68-4\sqrt{17}\right)^{2}.
\frac{4624-544\sqrt{17}+16\times 17}{17^{2}}+16
The square of \sqrt{17} is 17.
\frac{4624-544\sqrt{17}+272}{17^{2}}+16
Multiply 16 and 17 to get 272.
\frac{4896-544\sqrt{17}}{17^{2}}+16
Add 4624 and 272 to get 4896.
\frac{4896-544\sqrt{17}}{289}+16
Calculate 17 to the power of 2 and get 289.
\frac{4896-544\sqrt{17}}{289}+\frac{16\times 289}{289}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{289}{289}.
\frac{4896-544\sqrt{17}+16\times 289}{289}
Since \frac{4896-544\sqrt{17}}{289} and \frac{16\times 289}{289} have the same denominator, add them by adding their numerators.
\frac{4896-544\sqrt{17}+4624}{289}
Do the multiplications in 4896-544\sqrt{17}+16\times 289.
\frac{9520-544\sqrt{17}}{289}
Do the calculations in 4896-544\sqrt{17}+4624.
\frac{\left(68-4\sqrt{17}\right)^{2}}{17^{2}}+4^{2}
To raise \frac{68-4\sqrt{17}}{17} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(68-4\sqrt{17}\right)^{2}}{17^{2}}+16
Calculate 4 to the power of 2 and get 16.
\frac{\left(68-4\sqrt{17}\right)^{2}}{17^{2}}+\frac{16\times 17^{2}}{17^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{17^{2}}{17^{2}}.
\frac{\left(68-4\sqrt{17}\right)^{2}+16\times 17^{2}}{17^{2}}
Since \frac{\left(68-4\sqrt{17}\right)^{2}}{17^{2}} and \frac{16\times 17^{2}}{17^{2}} have the same denominator, add them by adding their numerators.
\frac{4624-544\sqrt{17}+16\left(\sqrt{17}\right)^{2}}{17^{2}}+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(68-4\sqrt{17}\right)^{2}.
\frac{4624-544\sqrt{17}+16\times 17}{17^{2}}+16
The square of \sqrt{17} is 17.
\frac{4624-544\sqrt{17}+272}{17^{2}}+16
Multiply 16 and 17 to get 272.
\frac{4896-544\sqrt{17}}{17^{2}}+16
Add 4624 and 272 to get 4896.
\frac{4896-544\sqrt{17}}{289}+16
Calculate 17 to the power of 2 and get 289.
\frac{4896-544\sqrt{17}}{289}+\frac{16\times 289}{289}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{289}{289}.
\frac{4896-544\sqrt{17}+16\times 289}{289}
Since \frac{4896-544\sqrt{17}}{289} and \frac{16\times 289}{289} have the same denominator, add them by adding their numerators.
\frac{4896-544\sqrt{17}+4624}{289}
Do the multiplications in 4896-544\sqrt{17}+16\times 289.
\frac{9520-544\sqrt{17}}{289}
Do the calculations in 4896-544\sqrt{17}+4624.