Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{64y^{2}x^{6}}{27}\right)^{-\frac{1}{3}}
Cancel out xy in both numerator and denominator.
\frac{\left(64y^{2}x^{6}\right)^{-\frac{1}{3}}}{27^{-\frac{1}{3}}}
To raise \frac{64y^{2}x^{6}}{27} to a power, raise both numerator and denominator to the power and then divide.
\frac{64^{-\frac{1}{3}}\left(y^{2}\right)^{-\frac{1}{3}}\left(x^{6}\right)^{-\frac{1}{3}}}{27^{-\frac{1}{3}}}
Expand \left(64y^{2}x^{6}\right)^{-\frac{1}{3}}.
\frac{64^{-\frac{1}{3}}y^{-\frac{2}{3}}\left(x^{6}\right)^{-\frac{1}{3}}}{27^{-\frac{1}{3}}}
To raise a power to another power, multiply the exponents. Multiply 2 and -\frac{1}{3} to get -\frac{2}{3}.
\frac{64^{-\frac{1}{3}}y^{-\frac{2}{3}}x^{-2}}{27^{-\frac{1}{3}}}
To raise a power to another power, multiply the exponents. Multiply 6 and -\frac{1}{3} to get -2.
\frac{\frac{1}{4}y^{-\frac{2}{3}}x^{-2}}{27^{-\frac{1}{3}}}
Calculate 64 to the power of -\frac{1}{3} and get \frac{1}{4}.
\frac{\frac{1}{4}y^{-\frac{2}{3}}x^{-2}}{\frac{1}{3}}
Calculate 27 to the power of -\frac{1}{3} and get \frac{1}{3}.
\frac{1}{4}y^{-\frac{2}{3}}x^{-2}\times 3
Divide \frac{1}{4}y^{-\frac{2}{3}}x^{-2} by \frac{1}{3} by multiplying \frac{1}{4}y^{-\frac{2}{3}}x^{-2} by the reciprocal of \frac{1}{3}.
\frac{3}{4}y^{-\frac{2}{3}}x^{-2}
Multiply \frac{1}{4} and 3 to get \frac{3}{4}.