Evaluate
9
Factor
3^{2}
Share
Copied to clipboard
\left(\frac{69}{14}+\frac{739}{358}+\frac{458}{947}\right)\left(\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Reduce the fraction \frac{621}{126} to lowest terms by extracting and canceling out 9.
\left(\frac{12351}{2506}+\frac{5173}{2506}+\frac{458}{947}\right)\left(\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Least common multiple of 14 and 358 is 2506. Convert \frac{69}{14} and \frac{739}{358} to fractions with denominator 2506.
\left(\frac{12351+5173}{2506}+\frac{458}{947}\right)\left(\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Since \frac{12351}{2506} and \frac{5173}{2506} have the same denominator, add them by adding their numerators.
\left(\frac{17524}{2506}+\frac{458}{947}\right)\left(\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Add 12351 and 5173 to get 17524.
\left(\frac{8762}{1253}+\frac{458}{947}\right)\left(\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Reduce the fraction \frac{17524}{2506} to lowest terms by extracting and canceling out 2.
\left(\frac{8297614}{1186591}+\frac{573874}{1186591}\right)\left(\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Least common multiple of 1253 and 947 is 1186591. Convert \frac{8762}{1253} and \frac{458}{947} to fractions with denominator 1186591.
\frac{8297614+573874}{1186591}\left(\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Since \frac{8297614}{1186591} and \frac{573874}{1186591} have the same denominator, add them by adding their numerators.
\frac{8871488}{1186591}\left(\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Add 8297614 and 573874 to get 8871488.
\frac{8871488}{1186591}\left(\frac{699833}{339026}+\frac{163964}{339026}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Least common multiple of 358 and 947 is 339026. Convert \frac{739}{358} and \frac{458}{947} to fractions with denominator 339026.
\frac{8871488}{1186591}\left(\frac{699833+163964}{339026}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Since \frac{699833}{339026} and \frac{163964}{339026} have the same denominator, add them by adding their numerators.
\frac{8871488}{1186591}\left(\frac{863797}{339026}+\frac{378}{207}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Add 699833 and 163964 to get 863797.
\frac{8871488}{1186591}\left(\frac{863797}{339026}+\frac{42}{23}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Reduce the fraction \frac{378}{207} to lowest terms by extracting and canceling out 9.
\frac{8871488}{1186591}\left(\frac{19867331}{7797598}+\frac{14239092}{7797598}\right)-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Least common multiple of 339026 and 23 is 7797598. Convert \frac{863797}{339026} and \frac{42}{23} to fractions with denominator 7797598.
\frac{8871488}{1186591}\times \frac{19867331+14239092}{7797598}-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Since \frac{19867331}{7797598} and \frac{14239092}{7797598} have the same denominator, add them by adding their numerators.
\frac{8871488}{1186591}\times \frac{34106423}{7797598}-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Add 19867331 and 14239092 to get 34106423.
\frac{8871488\times 34106423}{1186591\times 7797598}-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Multiply \frac{8871488}{1186591} times \frac{34106423}{7797598} by multiplying numerator times numerator and denominator times denominator.
\frac{302574722367424}{9252559608418}-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Do the multiplications in the fraction \frac{8871488\times 34106423}{1186591\times 7797598}.
\frac{151287361183712}{4626279804209}-\left(\frac{621}{126}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Reduce the fraction \frac{302574722367424}{9252559608418} to lowest terms by extracting and canceling out 2.
\frac{151287361183712}{4626279804209}-\left(\frac{69}{14}+\frac{739}{358}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Reduce the fraction \frac{621}{126} to lowest terms by extracting and canceling out 9.
\frac{151287361183712}{4626279804209}-\left(\frac{12351}{2506}+\frac{5173}{2506}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Least common multiple of 14 and 358 is 2506. Convert \frac{69}{14} and \frac{739}{358} to fractions with denominator 2506.
\frac{151287361183712}{4626279804209}-\left(\frac{12351+5173}{2506}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Since \frac{12351}{2506} and \frac{5173}{2506} have the same denominator, add them by adding their numerators.
\frac{151287361183712}{4626279804209}-\left(\frac{17524}{2506}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Add 12351 and 5173 to get 17524.
\frac{151287361183712}{4626279804209}-\left(\frac{8762}{1253}+\frac{458}{947}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Reduce the fraction \frac{17524}{2506} to lowest terms by extracting and canceling out 2.
\frac{151287361183712}{4626279804209}-\left(\frac{8297614}{1186591}+\frac{573874}{1186591}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Least common multiple of 1253 and 947 is 1186591. Convert \frac{8762}{1253} and \frac{458}{947} to fractions with denominator 1186591.
\frac{151287361183712}{4626279804209}-\left(\frac{8297614+573874}{1186591}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Since \frac{8297614}{1186591} and \frac{573874}{1186591} have the same denominator, add them by adding their numerators.
\frac{151287361183712}{4626279804209}-\left(\frac{8871488}{1186591}+\frac{378}{207}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Add 8297614 and 573874 to get 8871488.
\frac{151287361183712}{4626279804209}-\left(\frac{8871488}{1186591}+\frac{42}{23}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Reduce the fraction \frac{378}{207} to lowest terms by extracting and canceling out 9.
\frac{151287361183712}{4626279804209}-\left(\frac{204044224}{27291593}+\frac{49836822}{27291593}\right)\left(\frac{739}{358}+\frac{458}{947}\right)
Least common multiple of 1186591 and 23 is 27291593. Convert \frac{8871488}{1186591} and \frac{42}{23} to fractions with denominator 27291593.
\frac{151287361183712}{4626279804209}-\frac{204044224+49836822}{27291593}\left(\frac{739}{358}+\frac{458}{947}\right)
Since \frac{204044224}{27291593} and \frac{49836822}{27291593} have the same denominator, add them by adding their numerators.
\frac{151287361183712}{4626279804209}-\frac{253881046}{27291593}\left(\frac{739}{358}+\frac{458}{947}\right)
Add 204044224 and 49836822 to get 253881046.
\frac{151287361183712}{4626279804209}-\frac{253881046}{27291593}\left(\frac{699833}{339026}+\frac{163964}{339026}\right)
Least common multiple of 358 and 947 is 339026. Convert \frac{739}{358} and \frac{458}{947} to fractions with denominator 339026.
\frac{151287361183712}{4626279804209}-\frac{253881046}{27291593}\times \frac{699833+163964}{339026}
Since \frac{699833}{339026} and \frac{163964}{339026} have the same denominator, add them by adding their numerators.
\frac{151287361183712}{4626279804209}-\frac{253881046}{27291593}\times \frac{863797}{339026}
Add 699833 and 163964 to get 863797.
\frac{151287361183712}{4626279804209}-\frac{253881046\times 863797}{27291593\times 339026}
Multiply \frac{253881046}{27291593} times \frac{863797}{339026} by multiplying numerator times numerator and denominator times denominator.
\frac{151287361183712}{4626279804209}-\frac{219301685891662}{9252559608418}
Do the multiplications in the fraction \frac{253881046\times 863797}{27291593\times 339026}.
\frac{151287361183712}{4626279804209}-\frac{109650842945831}{4626279804209}
Reduce the fraction \frac{219301685891662}{9252559608418} to lowest terms by extracting and canceling out 2.
\frac{151287361183712-109650842945831}{4626279804209}
Since \frac{151287361183712}{4626279804209} and \frac{109650842945831}{4626279804209} have the same denominator, subtract them by subtracting their numerators.
\frac{41636518237881}{4626279804209}
Subtract 109650842945831 from 151287361183712 to get 41636518237881.
9
Divide 41636518237881 by 4626279804209 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}