Solve for x
x = \frac{727}{35} = 20\frac{27}{35} \approx 20.771428571
Graph
Share
Copied to clipboard
\frac{61}{5}+\frac{180}{5}+\frac{61}{5}+85=7x
Convert 36 to fraction \frac{180}{5}.
\frac{61+180}{5}+\frac{61}{5}+85=7x
Since \frac{61}{5} and \frac{180}{5} have the same denominator, add them by adding their numerators.
\frac{241}{5}+\frac{61}{5}+85=7x
Add 61 and 180 to get 241.
\frac{241+61}{5}+85=7x
Since \frac{241}{5} and \frac{61}{5} have the same denominator, add them by adding their numerators.
\frac{302}{5}+85=7x
Add 241 and 61 to get 302.
\frac{302}{5}+\frac{425}{5}=7x
Convert 85 to fraction \frac{425}{5}.
\frac{302+425}{5}=7x
Since \frac{302}{5} and \frac{425}{5} have the same denominator, add them by adding their numerators.
\frac{727}{5}=7x
Add 302 and 425 to get 727.
7x=\frac{727}{5}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{727}{5}}{7}
Divide both sides by 7.
x=\frac{727}{5\times 7}
Express \frac{\frac{727}{5}}{7} as a single fraction.
x=\frac{727}{35}
Multiply 5 and 7 to get 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}