Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{6.626\times 10^{-41}\times 9\times 4.6}{8\times 3\times 10^{8}\times 1.77\times 10^{-25}}\right)^{\frac{1}{2}}
To multiply powers of the same base, add their exponents. Add -34 and -7 to get -41.
\left(\frac{6.626\times 10^{-41}\times 9\times 4.6}{8\times 3\times 10^{-17}\times 1.77}\right)^{\frac{1}{2}}
To multiply powers of the same base, add their exponents. Add 8 and -25 to get -17.
\left(\frac{3\times 4.6\times 6.626\times 10^{-41}}{1.77\times 8\times 10^{-17}}\right)^{\frac{1}{2}}
Cancel out 3 in both numerator and denominator.
\left(\frac{3\times 4.6\times 6.626}{1.77\times 8\times 10^{24}}\right)^{\frac{1}{2}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{13.8\times 6.626}{1.77\times 8\times 10^{24}}\right)^{\frac{1}{2}}
Multiply 3 and 4.6 to get 13.8.
\left(\frac{91.4388}{1.77\times 8\times 10^{24}}\right)^{\frac{1}{2}}
Multiply 13.8 and 6.626 to get 91.4388.
\left(\frac{91.4388}{14.16\times 10^{24}}\right)^{\frac{1}{2}}
Multiply 1.77 and 8 to get 14.16.
\left(\frac{91.4388}{14.16\times 1000000000000000000000000}\right)^{\frac{1}{2}}
Calculate 10 to the power of 24 and get 1000000000000000000000000.
\left(\frac{91.4388}{14160000000000000000000000}\right)^{\frac{1}{2}}
Multiply 14.16 and 1000000000000000000000000 to get 14160000000000000000000000.
\left(\frac{914388}{141600000000000000000000000000}\right)^{\frac{1}{2}}
Expand \frac{91.4388}{14160000000000000000000000} by multiplying both numerator and the denominator by 10000.
\left(\frac{76199}{11800000000000000000000000000}\right)^{\frac{1}{2}}
Reduce the fraction \frac{914388}{141600000000000000000000000000} to lowest terms by extracting and canceling out 12.