( \frac { 6 } { 8 } - \frac { 10 } { 24 } + \frac { 14 } { 48 } - \frac { 18 } { 80 } + \frac { 22 } { 120 }
Evaluate
\frac{7}{12}\approx 0.583333333
Factor
\frac{7}{2 ^ {2} \cdot 3} = 0.5833333333333334
Share
Copied to clipboard
\frac{3}{4}-\frac{10}{24}+\frac{14}{48}-\frac{18}{80}+\frac{22}{120}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
\frac{3}{4}-\frac{5}{12}+\frac{14}{48}-\frac{18}{80}+\frac{22}{120}
Reduce the fraction \frac{10}{24} to lowest terms by extracting and canceling out 2.
\frac{9}{12}-\frac{5}{12}+\frac{14}{48}-\frac{18}{80}+\frac{22}{120}
Least common multiple of 4 and 12 is 12. Convert \frac{3}{4} and \frac{5}{12} to fractions with denominator 12.
\frac{9-5}{12}+\frac{14}{48}-\frac{18}{80}+\frac{22}{120}
Since \frac{9}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{12}+\frac{14}{48}-\frac{18}{80}+\frac{22}{120}
Subtract 5 from 9 to get 4.
\frac{1}{3}+\frac{14}{48}-\frac{18}{80}+\frac{22}{120}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{1}{3}+\frac{7}{24}-\frac{18}{80}+\frac{22}{120}
Reduce the fraction \frac{14}{48} to lowest terms by extracting and canceling out 2.
\frac{8}{24}+\frac{7}{24}-\frac{18}{80}+\frac{22}{120}
Least common multiple of 3 and 24 is 24. Convert \frac{1}{3} and \frac{7}{24} to fractions with denominator 24.
\frac{8+7}{24}-\frac{18}{80}+\frac{22}{120}
Since \frac{8}{24} and \frac{7}{24} have the same denominator, add them by adding their numerators.
\frac{15}{24}-\frac{18}{80}+\frac{22}{120}
Add 8 and 7 to get 15.
\frac{5}{8}-\frac{18}{80}+\frac{22}{120}
Reduce the fraction \frac{15}{24} to lowest terms by extracting and canceling out 3.
\frac{5}{8}-\frac{9}{40}+\frac{22}{120}
Reduce the fraction \frac{18}{80} to lowest terms by extracting and canceling out 2.
\frac{25}{40}-\frac{9}{40}+\frac{22}{120}
Least common multiple of 8 and 40 is 40. Convert \frac{5}{8} and \frac{9}{40} to fractions with denominator 40.
\frac{25-9}{40}+\frac{22}{120}
Since \frac{25}{40} and \frac{9}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{16}{40}+\frac{22}{120}
Subtract 9 from 25 to get 16.
\frac{2}{5}+\frac{22}{120}
Reduce the fraction \frac{16}{40} to lowest terms by extracting and canceling out 8.
\frac{2}{5}+\frac{11}{60}
Reduce the fraction \frac{22}{120} to lowest terms by extracting and canceling out 2.
\frac{24}{60}+\frac{11}{60}
Least common multiple of 5 and 60 is 60. Convert \frac{2}{5} and \frac{11}{60} to fractions with denominator 60.
\frac{24+11}{60}
Since \frac{24}{60} and \frac{11}{60} have the same denominator, add them by adding their numerators.
\frac{35}{60}
Add 24 and 11 to get 35.
\frac{7}{12}
Reduce the fraction \frac{35}{60} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}