Solve for C
C = \frac{8}{5} = 1\frac{3}{5} = 1.6
Share
Copied to clipboard
\frac{36}{25}=2^{2}+C^{2}-2\times 2C\times \frac{4}{5}
Calculate \frac{6}{5} to the power of 2 and get \frac{36}{25}.
\frac{36}{25}=4+C^{2}-2\times 2C\times \frac{4}{5}
Calculate 2 to the power of 2 and get 4.
\frac{36}{25}=4+C^{2}-4C\times \frac{4}{5}
Multiply 2 and 2 to get 4.
\frac{36}{25}=4+C^{2}-\frac{16}{5}C
Multiply 4 and \frac{4}{5} to get \frac{16}{5}.
4+C^{2}-\frac{16}{5}C=\frac{36}{25}
Swap sides so that all variable terms are on the left hand side.
4+C^{2}-\frac{16}{5}C-\frac{36}{25}=0
Subtract \frac{36}{25} from both sides.
\frac{64}{25}+C^{2}-\frac{16}{5}C=0
Subtract \frac{36}{25} from 4 to get \frac{64}{25}.
C^{2}-\frac{16}{5}C+\frac{64}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
C=\frac{-\left(-\frac{16}{5}\right)±\sqrt{\left(-\frac{16}{5}\right)^{2}-4\times \frac{64}{25}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{16}{5} for b, and \frac{64}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
C=\frac{-\left(-\frac{16}{5}\right)±\sqrt{\frac{256}{25}-4\times \frac{64}{25}}}{2}
Square -\frac{16}{5} by squaring both the numerator and the denominator of the fraction.
C=\frac{-\left(-\frac{16}{5}\right)±\sqrt{\frac{256-256}{25}}}{2}
Multiply -4 times \frac{64}{25}.
C=\frac{-\left(-\frac{16}{5}\right)±\sqrt{0}}{2}
Add \frac{256}{25} to -\frac{256}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
C=-\frac{-\frac{16}{5}}{2}
Take the square root of 0.
C=\frac{\frac{16}{5}}{2}
The opposite of -\frac{16}{5} is \frac{16}{5}.
C=\frac{8}{5}
Divide \frac{16}{5} by 2.
\frac{36}{25}=2^{2}+C^{2}-2\times 2C\times \frac{4}{5}
Calculate \frac{6}{5} to the power of 2 and get \frac{36}{25}.
\frac{36}{25}=4+C^{2}-2\times 2C\times \frac{4}{5}
Calculate 2 to the power of 2 and get 4.
\frac{36}{25}=4+C^{2}-4C\times \frac{4}{5}
Multiply 2 and 2 to get 4.
\frac{36}{25}=4+C^{2}-\frac{16}{5}C
Multiply 4 and \frac{4}{5} to get \frac{16}{5}.
4+C^{2}-\frac{16}{5}C=\frac{36}{25}
Swap sides so that all variable terms are on the left hand side.
C^{2}-\frac{16}{5}C=\frac{36}{25}-4
Subtract 4 from both sides.
C^{2}-\frac{16}{5}C=-\frac{64}{25}
Subtract 4 from \frac{36}{25} to get -\frac{64}{25}.
C^{2}-\frac{16}{5}C+\left(-\frac{8}{5}\right)^{2}=-\frac{64}{25}+\left(-\frac{8}{5}\right)^{2}
Divide -\frac{16}{5}, the coefficient of the x term, by 2 to get -\frac{8}{5}. Then add the square of -\frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
C^{2}-\frac{16}{5}C+\frac{64}{25}=\frac{-64+64}{25}
Square -\frac{8}{5} by squaring both the numerator and the denominator of the fraction.
C^{2}-\frac{16}{5}C+\frac{64}{25}=0
Add -\frac{64}{25} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(C-\frac{8}{5}\right)^{2}=0
Factor C^{2}-\frac{16}{5}C+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(C-\frac{8}{5}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
C-\frac{8}{5}=0 C-\frac{8}{5}=0
Simplify.
C=\frac{8}{5} C=\frac{8}{5}
Add \frac{8}{5} to both sides of the equation.
C=\frac{8}{5}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}