Solve for x
x=-\frac{151}{392}\approx -0.385204082
Graph
Share
Copied to clipboard
\frac{6}{5}\times \frac{6}{7}+2x-\frac{3}{2}=\frac{4}{5}x+12x+6\left(x+1\right)
Divide \frac{6}{5} by \frac{7}{6} by multiplying \frac{6}{5} by the reciprocal of \frac{7}{6}.
\frac{6\times 6}{5\times 7}+2x-\frac{3}{2}=\frac{4}{5}x+12x+6\left(x+1\right)
Multiply \frac{6}{5} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{36}{35}+2x-\frac{3}{2}=\frac{4}{5}x+12x+6\left(x+1\right)
Do the multiplications in the fraction \frac{6\times 6}{5\times 7}.
\frac{72}{70}+2x-\frac{105}{70}=\frac{4}{5}x+12x+6\left(x+1\right)
Least common multiple of 35 and 2 is 70. Convert \frac{36}{35} and \frac{3}{2} to fractions with denominator 70.
\frac{72-105}{70}+2x=\frac{4}{5}x+12x+6\left(x+1\right)
Since \frac{72}{70} and \frac{105}{70} have the same denominator, subtract them by subtracting their numerators.
-\frac{33}{70}+2x=\frac{4}{5}x+12x+6\left(x+1\right)
Subtract 105 from 72 to get -33.
-\frac{33}{70}+2x=\frac{64}{5}x+6\left(x+1\right)
Combine \frac{4}{5}x and 12x to get \frac{64}{5}x.
-\frac{33}{70}+2x=\frac{64}{5}x+6x+6
Use the distributive property to multiply 6 by x+1.
-\frac{33}{70}+2x=\frac{94}{5}x+6
Combine \frac{64}{5}x and 6x to get \frac{94}{5}x.
-\frac{33}{70}+2x-\frac{94}{5}x=6
Subtract \frac{94}{5}x from both sides.
-\frac{33}{70}-\frac{84}{5}x=6
Combine 2x and -\frac{94}{5}x to get -\frac{84}{5}x.
-\frac{84}{5}x=6+\frac{33}{70}
Add \frac{33}{70} to both sides.
-\frac{84}{5}x=\frac{420}{70}+\frac{33}{70}
Convert 6 to fraction \frac{420}{70}.
-\frac{84}{5}x=\frac{420+33}{70}
Since \frac{420}{70} and \frac{33}{70} have the same denominator, add them by adding their numerators.
-\frac{84}{5}x=\frac{453}{70}
Add 420 and 33 to get 453.
x=\frac{453}{70}\left(-\frac{5}{84}\right)
Multiply both sides by -\frac{5}{84}, the reciprocal of -\frac{84}{5}.
x=\frac{453\left(-5\right)}{70\times 84}
Multiply \frac{453}{70} times -\frac{5}{84} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-2265}{5880}
Do the multiplications in the fraction \frac{453\left(-5\right)}{70\times 84}.
x=-\frac{151}{392}
Reduce the fraction \frac{-2265}{5880} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}