Evaluate
\frac{n^{12}}{8m^{6}}
Expand
\frac{n^{12}}{8m^{6}}
Share
Copied to clipboard
\left(\frac{6}{3}m^{2}\times \frac{n^{-2}}{n^{2}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -1 from 1 to get 2.
\left(\frac{6}{3}m^{2}\times \frac{1}{n^{4}}\right)^{-3}
Rewrite n^{2} as n^{-2}n^{4}. Cancel out n^{-2} in both numerator and denominator.
\left(2m^{2}\times \frac{1}{n^{4}}\right)^{-3}
Divide 6 by 3 to get 2.
\left(\frac{2}{n^{4}}m^{2}\right)^{-3}
Express 2\times \frac{1}{n^{4}} as a single fraction.
\left(\frac{2}{n^{4}}\right)^{-3}\left(m^{2}\right)^{-3}
Expand \left(\frac{2}{n^{4}}m^{2}\right)^{-3}.
\left(\frac{2}{n^{4}}\right)^{-3}m^{-6}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{2^{-3}}{\left(n^{4}\right)^{-3}}m^{-6}
To raise \frac{2}{n^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{-3}m^{-6}}{\left(n^{4}\right)^{-3}}
Express \frac{2^{-3}}{\left(n^{4}\right)^{-3}}m^{-6} as a single fraction.
\frac{2^{-3}m^{-6}}{n^{-12}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{\frac{1}{8}m^{-6}}{n^{-12}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\left(\frac{6}{3}m^{2}\times \frac{n^{-2}}{n^{2}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -1 from 1 to get 2.
\left(\frac{6}{3}m^{2}\times \frac{1}{n^{4}}\right)^{-3}
Rewrite n^{2} as n^{-2}n^{4}. Cancel out n^{-2} in both numerator and denominator.
\left(2m^{2}\times \frac{1}{n^{4}}\right)^{-3}
Divide 6 by 3 to get 2.
\left(\frac{2}{n^{4}}m^{2}\right)^{-3}
Express 2\times \frac{1}{n^{4}} as a single fraction.
\left(\frac{2}{n^{4}}\right)^{-3}\left(m^{2}\right)^{-3}
Expand \left(\frac{2}{n^{4}}m^{2}\right)^{-3}.
\left(\frac{2}{n^{4}}\right)^{-3}m^{-6}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{2^{-3}}{\left(n^{4}\right)^{-3}}m^{-6}
To raise \frac{2}{n^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{-3}m^{-6}}{\left(n^{4}\right)^{-3}}
Express \frac{2^{-3}}{\left(n^{4}\right)^{-3}}m^{-6} as a single fraction.
\frac{2^{-3}m^{-6}}{n^{-12}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{\frac{1}{8}m^{-6}}{n^{-12}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}