Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{6}{3}m^{2}\times \frac{n^{-2}}{n^{2}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -1 from 1 to get 2.
\left(\frac{6}{3}m^{2}\times \frac{1}{n^{4}}\right)^{-3}
Rewrite n^{2} as n^{-2}n^{4}. Cancel out n^{-2} in both numerator and denominator.
\left(2m^{2}\times \frac{1}{n^{4}}\right)^{-3}
Divide 6 by 3 to get 2.
\left(\frac{2}{n^{4}}m^{2}\right)^{-3}
Express 2\times \frac{1}{n^{4}} as a single fraction.
\left(\frac{2}{n^{4}}\right)^{-3}\left(m^{2}\right)^{-3}
Expand \left(\frac{2}{n^{4}}m^{2}\right)^{-3}.
\left(\frac{2}{n^{4}}\right)^{-3}m^{-6}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{2^{-3}}{\left(n^{4}\right)^{-3}}m^{-6}
To raise \frac{2}{n^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{-3}m^{-6}}{\left(n^{4}\right)^{-3}}
Express \frac{2^{-3}}{\left(n^{4}\right)^{-3}}m^{-6} as a single fraction.
\frac{2^{-3}m^{-6}}{n^{-12}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{\frac{1}{8}m^{-6}}{n^{-12}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\left(\frac{6}{3}m^{2}\times \frac{n^{-2}}{n^{2}}\right)^{-3}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -1 from 1 to get 2.
\left(\frac{6}{3}m^{2}\times \frac{1}{n^{4}}\right)^{-3}
Rewrite n^{2} as n^{-2}n^{4}. Cancel out n^{-2} in both numerator and denominator.
\left(2m^{2}\times \frac{1}{n^{4}}\right)^{-3}
Divide 6 by 3 to get 2.
\left(\frac{2}{n^{4}}m^{2}\right)^{-3}
Express 2\times \frac{1}{n^{4}} as a single fraction.
\left(\frac{2}{n^{4}}\right)^{-3}\left(m^{2}\right)^{-3}
Expand \left(\frac{2}{n^{4}}m^{2}\right)^{-3}.
\left(\frac{2}{n^{4}}\right)^{-3}m^{-6}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{2^{-3}}{\left(n^{4}\right)^{-3}}m^{-6}
To raise \frac{2}{n^{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{2^{-3}m^{-6}}{\left(n^{4}\right)^{-3}}
Express \frac{2^{-3}}{\left(n^{4}\right)^{-3}}m^{-6} as a single fraction.
\frac{2^{-3}m^{-6}}{n^{-12}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{\frac{1}{8}m^{-6}}{n^{-12}}
Calculate 2 to the power of -3 and get \frac{1}{8}.