Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{5x^{3}y^{5}}{3}\right)^{3}\times \left(\frac{3x^{-3}y^{-4}}{5x^{3}y^{7}}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(5x^{3}y^{5}\right)^{3}}{3^{3}}\times \left(\frac{3x^{-3}y^{-4}}{5x^{3}y^{7}}\right)^{2}
To raise \frac{5x^{3}y^{5}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(5x^{3}y^{5}\right)^{3}}{3^{3}}\times \left(\frac{3}{5x^{6}y^{11}}\right)^{2}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(5x^{3}y^{5}\right)^{3}}{3^{3}}\times \frac{3^{2}}{\left(5x^{6}y^{11}\right)^{2}}
To raise \frac{3}{5x^{6}y^{11}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(5x^{3}y^{5}\right)^{3}\times 3^{2}}{3^{3}\times \left(5x^{6}y^{11}\right)^{2}}
Multiply \frac{\left(5x^{3}y^{5}\right)^{3}}{3^{3}} times \frac{3^{2}}{\left(5x^{6}y^{11}\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(5x^{3}y^{5}\right)^{3}}{3\times \left(5x^{6}y^{11}\right)^{2}}
Cancel out 3^{2} in both numerator and denominator.
\frac{5^{3}\left(x^{3}\right)^{3}\left(y^{5}\right)^{3}}{3\times \left(5x^{6}y^{11}\right)^{2}}
Expand \left(5x^{3}y^{5}\right)^{3}.
\frac{5^{3}x^{9}\left(y^{5}\right)^{3}}{3\times \left(5x^{6}y^{11}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{5^{3}x^{9}y^{15}}{3\times \left(5x^{6}y^{11}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{125x^{9}y^{15}}{3\times \left(5x^{6}y^{11}\right)^{2}}
Calculate 5 to the power of 3 and get 125.
\frac{125x^{9}y^{15}}{3\times 5^{2}\left(x^{6}\right)^{2}\left(y^{11}\right)^{2}}
Expand \left(5x^{6}y^{11}\right)^{2}.
\frac{125x^{9}y^{15}}{3\times 5^{2}x^{12}\left(y^{11}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{125x^{9}y^{15}}{3\times 5^{2}x^{12}y^{22}}
To raise a power to another power, multiply the exponents. Multiply 11 and 2 to get 22.
\frac{125x^{9}y^{15}}{3\times 25x^{12}y^{22}}
Calculate 5 to the power of 2 and get 25.
\frac{125x^{9}y^{15}}{75x^{12}y^{22}}
Multiply 3 and 25 to get 75.
\frac{5}{3x^{3}y^{7}}
Cancel out 25x^{9}y^{15} in both numerator and denominator.
\left(\frac{5x^{3}y^{5}}{3}\right)^{3}\times \left(\frac{3x^{-3}y^{-4}}{5x^{3}y^{7}}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(5x^{3}y^{5}\right)^{3}}{3^{3}}\times \left(\frac{3x^{-3}y^{-4}}{5x^{3}y^{7}}\right)^{2}
To raise \frac{5x^{3}y^{5}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(5x^{3}y^{5}\right)^{3}}{3^{3}}\times \left(\frac{3}{5x^{6}y^{11}}\right)^{2}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(5x^{3}y^{5}\right)^{3}}{3^{3}}\times \frac{3^{2}}{\left(5x^{6}y^{11}\right)^{2}}
To raise \frac{3}{5x^{6}y^{11}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(5x^{3}y^{5}\right)^{3}\times 3^{2}}{3^{3}\times \left(5x^{6}y^{11}\right)^{2}}
Multiply \frac{\left(5x^{3}y^{5}\right)^{3}}{3^{3}} times \frac{3^{2}}{\left(5x^{6}y^{11}\right)^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(5x^{3}y^{5}\right)^{3}}{3\times \left(5x^{6}y^{11}\right)^{2}}
Cancel out 3^{2} in both numerator and denominator.
\frac{5^{3}\left(x^{3}\right)^{3}\left(y^{5}\right)^{3}}{3\times \left(5x^{6}y^{11}\right)^{2}}
Expand \left(5x^{3}y^{5}\right)^{3}.
\frac{5^{3}x^{9}\left(y^{5}\right)^{3}}{3\times \left(5x^{6}y^{11}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{5^{3}x^{9}y^{15}}{3\times \left(5x^{6}y^{11}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{125x^{9}y^{15}}{3\times \left(5x^{6}y^{11}\right)^{2}}
Calculate 5 to the power of 3 and get 125.
\frac{125x^{9}y^{15}}{3\times 5^{2}\left(x^{6}\right)^{2}\left(y^{11}\right)^{2}}
Expand \left(5x^{6}y^{11}\right)^{2}.
\frac{125x^{9}y^{15}}{3\times 5^{2}x^{12}\left(y^{11}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{125x^{9}y^{15}}{3\times 5^{2}x^{12}y^{22}}
To raise a power to another power, multiply the exponents. Multiply 11 and 2 to get 22.
\frac{125x^{9}y^{15}}{3\times 25x^{12}y^{22}}
Calculate 5 to the power of 2 and get 25.
\frac{125x^{9}y^{15}}{75x^{12}y^{22}}
Multiply 3 and 25 to get 75.
\frac{5}{3x^{3}y^{7}}
Cancel out 25x^{9}y^{15} in both numerator and denominator.