Evaluate
-10k^{2}+50-\frac{100}{k}
Expand
-10k^{2}+50-\frac{100}{k}
Share
Copied to clipboard
\frac{\left(5k-10\right)\times 10}{k}-10k^{2}
Express \frac{5k-10}{k}\times 10 as a single fraction.
\frac{\left(5k-10\right)\times 10}{k}+\frac{-10k^{2}k}{k}
To add or subtract expressions, expand them to make their denominators the same. Multiply -10k^{2} times \frac{k}{k}.
\frac{\left(5k-10\right)\times 10-10k^{2}k}{k}
Since \frac{\left(5k-10\right)\times 10}{k} and \frac{-10k^{2}k}{k} have the same denominator, add them by adding their numerators.
\frac{50k-100-10k^{3}}{k}
Do the multiplications in \left(5k-10\right)\times 10-10k^{2}k.
\frac{\left(5k-10\right)\times 10}{k}-10k^{2}
Express \frac{5k-10}{k}\times 10 as a single fraction.
\frac{\left(5k-10\right)\times 10}{k}+\frac{-10k^{2}k}{k}
To add or subtract expressions, expand them to make their denominators the same. Multiply -10k^{2} times \frac{k}{k}.
\frac{\left(5k-10\right)\times 10-10k^{2}k}{k}
Since \frac{\left(5k-10\right)\times 10}{k} and \frac{-10k^{2}k}{k} have the same denominator, add them by adding their numerators.
\frac{50k-100-10k^{3}}{k}
Do the multiplications in \left(5k-10\right)\times 10-10k^{2}k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}