Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5^{2}}{y^{2}}-y^{2}=16
To raise \frac{5}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{5^{2}}{y^{2}}-\frac{y^{2}y^{2}}{y^{2}}=16
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{y^{2}}{y^{2}}.
\frac{5^{2}-y^{2}y^{2}}{y^{2}}=16
Since \frac{5^{2}}{y^{2}} and \frac{y^{2}y^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{5^{2}-y^{4}}{y^{2}}=16
Do the multiplications in 5^{2}-y^{2}y^{2}.
\frac{25-y^{4}}{y^{2}}=16
Combine like terms in 5^{2}-y^{4}.
\frac{25-y^{4}}{y^{2}}-16=0
Subtract 16 from both sides.
\frac{25-y^{4}}{y^{2}}-\frac{16y^{2}}{y^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{y^{2}}{y^{2}}.
\frac{25-y^{4}-16y^{2}}{y^{2}}=0
Since \frac{25-y^{4}}{y^{2}} and \frac{16y^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
25-y^{4}-16y^{2}=0
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y^{2}.
-t^{2}-16t+25=0
Substitute t for y^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-1\right)\times 25}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, -16 for b, and 25 for c in the quadratic formula.
t=\frac{16±2\sqrt{89}}{-2}
Do the calculations.
t=-\sqrt{89}-8 t=\sqrt{89}-8
Solve the equation t=\frac{16±2\sqrt{89}}{-2} when ± is plus and when ± is minus.
y=-i\sqrt{\sqrt{89}+8} y=i\sqrt{\sqrt{89}+8} y=-\sqrt{\sqrt{89}-8} y=\sqrt{\sqrt{89}-8}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
\frac{5^{2}}{y^{2}}-y^{2}=16
To raise \frac{5}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{5^{2}}{y^{2}}-\frac{y^{2}y^{2}}{y^{2}}=16
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{y^{2}}{y^{2}}.
\frac{5^{2}-y^{2}y^{2}}{y^{2}}=16
Since \frac{5^{2}}{y^{2}} and \frac{y^{2}y^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{5^{2}-y^{4}}{y^{2}}=16
Do the multiplications in 5^{2}-y^{2}y^{2}.
\frac{25-y^{4}}{y^{2}}=16
Combine like terms in 5^{2}-y^{4}.
\frac{25-y^{4}}{y^{2}}-16=0
Subtract 16 from both sides.
\frac{25-y^{4}}{y^{2}}-\frac{16y^{2}}{y^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{y^{2}}{y^{2}}.
\frac{25-y^{4}-16y^{2}}{y^{2}}=0
Since \frac{25-y^{4}}{y^{2}} and \frac{16y^{2}}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
25-y^{4}-16y^{2}=0
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y^{2}.
-t^{2}-16t+25=0
Substitute t for y^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-1\right)\times 25}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, -16 for b, and 25 for c in the quadratic formula.
t=\frac{16±2\sqrt{89}}{-2}
Do the calculations.
t=-\sqrt{89}-8 t=\sqrt{89}-8
Solve the equation t=\frac{16±2\sqrt{89}}{-2} when ± is plus and when ± is minus.
y=\sqrt{\sqrt{89}-8} y=-\sqrt{\sqrt{89}-8}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for positive t.