Evaluate
-\frac{27}{40}+\frac{9}{2b}
Expand
-\frac{27}{40}+\frac{9}{2b}
Share
Copied to clipboard
\frac{\frac{5\times 4}{4b}-\frac{3b}{4b}}{\frac{2}{3}+\frac{4}{9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and 4 is 4b. Multiply \frac{5}{b} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{b}{b}.
\frac{\frac{5\times 4-3b}{4b}}{\frac{2}{3}+\frac{4}{9}}
Since \frac{5\times 4}{4b} and \frac{3b}{4b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{20-3b}{4b}}{\frac{2}{3}+\frac{4}{9}}
Do the multiplications in 5\times 4-3b.
\frac{\frac{20-3b}{4b}}{\frac{6}{9}+\frac{4}{9}}
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{4}{9} to fractions with denominator 9.
\frac{\frac{20-3b}{4b}}{\frac{6+4}{9}}
Since \frac{6}{9} and \frac{4}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{20-3b}{4b}}{\frac{10}{9}}
Add 6 and 4 to get 10.
\frac{\left(20-3b\right)\times 9}{4b\times 10}
Divide \frac{20-3b}{4b} by \frac{10}{9} by multiplying \frac{20-3b}{4b} by the reciprocal of \frac{10}{9}.
\frac{\left(20-3b\right)\times 9}{40b}
Multiply 4 and 10 to get 40.
\frac{180-27b}{40b}
Use the distributive property to multiply 20-3b by 9.
\frac{\frac{5\times 4}{4b}-\frac{3b}{4b}}{\frac{2}{3}+\frac{4}{9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and 4 is 4b. Multiply \frac{5}{b} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{b}{b}.
\frac{\frac{5\times 4-3b}{4b}}{\frac{2}{3}+\frac{4}{9}}
Since \frac{5\times 4}{4b} and \frac{3b}{4b} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{20-3b}{4b}}{\frac{2}{3}+\frac{4}{9}}
Do the multiplications in 5\times 4-3b.
\frac{\frac{20-3b}{4b}}{\frac{6}{9}+\frac{4}{9}}
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{4}{9} to fractions with denominator 9.
\frac{\frac{20-3b}{4b}}{\frac{6+4}{9}}
Since \frac{6}{9} and \frac{4}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{20-3b}{4b}}{\frac{10}{9}}
Add 6 and 4 to get 10.
\frac{\left(20-3b\right)\times 9}{4b\times 10}
Divide \frac{20-3b}{4b} by \frac{10}{9} by multiplying \frac{20-3b}{4b} by the reciprocal of \frac{10}{9}.
\frac{\left(20-3b\right)\times 9}{40b}
Multiply 4 and 10 to get 40.
\frac{180-27b}{40b}
Use the distributive property to multiply 20-3b by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}