Evaluate
\frac{11}{24}\approx 0.458333333
Factor
\frac{11}{2 ^ {3} \cdot 3} = 0.4583333333333333
Share
Copied to clipboard
\left(\frac{5}{8}-\frac{2}{8}\right)\left(\frac{8}{9}+\frac{1}{3}\right)
Least common multiple of 8 and 4 is 8. Convert \frac{5}{8} and \frac{1}{4} to fractions with denominator 8.
\frac{5-2}{8}\left(\frac{8}{9}+\frac{1}{3}\right)
Since \frac{5}{8} and \frac{2}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{8}\left(\frac{8}{9}+\frac{1}{3}\right)
Subtract 2 from 5 to get 3.
\frac{3}{8}\left(\frac{8}{9}+\frac{3}{9}\right)
Least common multiple of 9 and 3 is 9. Convert \frac{8}{9} and \frac{1}{3} to fractions with denominator 9.
\frac{3}{8}\times \frac{8+3}{9}
Since \frac{8}{9} and \frac{3}{9} have the same denominator, add them by adding their numerators.
\frac{3}{8}\times \frac{11}{9}
Add 8 and 3 to get 11.
\frac{3\times 11}{8\times 9}
Multiply \frac{3}{8} times \frac{11}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{33}{72}
Do the multiplications in the fraction \frac{3\times 11}{8\times 9}.
\frac{11}{24}
Reduce the fraction \frac{33}{72} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}