Evaluate
\frac{5359375X}{262144}
Differentiate w.r.t. X
\frac{5359375}{262144} = 20\frac{116495}{262144} = 20.444393157958984
Share
Copied to clipboard
\frac{15625}{262144}X\times 7^{3}
Calculate \frac{5}{8} to the power of 6 and get \frac{15625}{262144}.
\frac{15625}{262144}X\times 343
Calculate 7 to the power of 3 and get 343.
\frac{15625\times 343}{262144}X
Express \frac{15625}{262144}\times 343 as a single fraction.
\frac{5359375}{262144}X
Multiply 15625 and 343 to get 5359375.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{15625}{262144}X\times 7^{3})
Calculate \frac{5}{8} to the power of 6 and get \frac{15625}{262144}.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{15625}{262144}X\times 343)
Calculate 7 to the power of 3 and get 343.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{15625\times 343}{262144}X)
Express \frac{15625}{262144}\times 343 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{5359375}{262144}X)
Multiply 15625 and 343 to get 5359375.
\frac{5359375}{262144}X^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{5359375}{262144}X^{0}
Subtract 1 from 1.
\frac{5359375}{262144}\times 1
For any term t except 0, t^{0}=1.
\frac{5359375}{262144}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}