Evaluate
\frac{127129}{6300}\approx 20.179206349
Factor
\frac{19 \cdot 6691}{2 ^ {2} \cdot 3 ^ {2} \cdot 5 ^ {2} \cdot 7} = 20\frac{1129}{6300} = 20.17920634920635
Share
Copied to clipboard
\frac{\frac{25}{30}-\frac{6}{30}}{-15}-\frac{-\frac{5}{8}}{1+1-\frac{3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Least common multiple of 6 and 5 is 30. Convert \frac{5}{6} and \frac{1}{5} to fractions with denominator 30.
\frac{\frac{25-6}{30}}{-15}-\frac{-\frac{5}{8}}{1+1-\frac{3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Since \frac{25}{30} and \frac{6}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{19}{30}}{-15}-\frac{-\frac{5}{8}}{1+1-\frac{3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Subtract 6 from 25 to get 19.
\frac{19}{30\left(-15\right)}-\frac{-\frac{5}{8}}{1+1-\frac{3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Express \frac{\frac{19}{30}}{-15} as a single fraction.
\frac{19}{-450}-\frac{-\frac{5}{8}}{1+1-\frac{3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Multiply 30 and -15 to get -450.
-\frac{19}{450}-\frac{-\frac{5}{8}}{1+1-\frac{3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Fraction \frac{19}{-450} can be rewritten as -\frac{19}{450} by extracting the negative sign.
-\frac{19}{450}-\frac{-\frac{5}{8}}{2-\frac{3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Add 1 and 1 to get 2.
-\frac{19}{450}-\frac{-\frac{5}{8}}{\frac{4}{2}-\frac{3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Convert 2 to fraction \frac{4}{2}.
-\frac{19}{450}-\frac{-\frac{5}{8}}{\frac{4-3}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Since \frac{4}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{19}{450}-\frac{-\frac{5}{8}}{\frac{1}{2}}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Subtract 3 from 4 to get 1.
-\frac{19}{450}-\left(-\frac{5}{8}\times 2\right)-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Divide -\frac{5}{8} by \frac{1}{2} by multiplying -\frac{5}{8} by the reciprocal of \frac{1}{2}.
-\frac{19}{450}-\frac{-5\times 2}{8}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Express -\frac{5}{8}\times 2 as a single fraction.
-\frac{19}{450}-\frac{-10}{8}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Multiply -5 and 2 to get -10.
-\frac{19}{450}-\left(-\frac{5}{4}\right)-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
-\frac{19}{450}+\frac{5}{4}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
The opposite of -\frac{5}{4} is \frac{5}{4}.
-\frac{38}{900}+\frac{1125}{900}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Least common multiple of 450 and 4 is 900. Convert -\frac{19}{450} and \frac{5}{4} to fractions with denominator 900.
\frac{-38+1125}{900}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Since -\frac{38}{900} and \frac{1125}{900} have the same denominator, add them by adding their numerators.
\frac{1087}{900}-\frac{\frac{16}{5}+30}{-\frac{7}{4}}
Add -38 and 1125 to get 1087.
\frac{1087}{900}-\frac{\frac{16}{5}+\frac{150}{5}}{-\frac{7}{4}}
Convert 30 to fraction \frac{150}{5}.
\frac{1087}{900}-\frac{\frac{16+150}{5}}{-\frac{7}{4}}
Since \frac{16}{5} and \frac{150}{5} have the same denominator, add them by adding their numerators.
\frac{1087}{900}-\frac{\frac{166}{5}}{-\frac{7}{4}}
Add 16 and 150 to get 166.
\frac{1087}{900}-\frac{166}{5}\left(-\frac{4}{7}\right)
Divide \frac{166}{5} by -\frac{7}{4} by multiplying \frac{166}{5} by the reciprocal of -\frac{7}{4}.
\frac{1087}{900}-\frac{166\left(-4\right)}{5\times 7}
Multiply \frac{166}{5} times -\frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1087}{900}-\frac{-664}{35}
Do the multiplications in the fraction \frac{166\left(-4\right)}{5\times 7}.
\frac{1087}{900}-\left(-\frac{664}{35}\right)
Fraction \frac{-664}{35} can be rewritten as -\frac{664}{35} by extracting the negative sign.
\frac{1087}{900}+\frac{664}{35}
The opposite of -\frac{664}{35} is \frac{664}{35}.
\frac{7609}{6300}+\frac{119520}{6300}
Least common multiple of 900 and 35 is 6300. Convert \frac{1087}{900} and \frac{664}{35} to fractions with denominator 6300.
\frac{7609+119520}{6300}
Since \frac{7609}{6300} and \frac{119520}{6300} have the same denominator, add them by adding their numerators.
\frac{127129}{6300}
Add 7609 and 119520 to get 127129.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}