Evaluate
\frac{8}{5}=1.6
Factor
\frac{2 ^ {3}}{5} = 1\frac{3}{5} = 1.6
Share
Copied to clipboard
\left(\frac{20}{24}+\frac{21}{24}\right)\times \frac{36}{41}+\frac{16}{25}\left(\frac{3}{4}-\frac{5}{8}\right)\times \frac{5}{4}
Least common multiple of 6 and 8 is 24. Convert \frac{5}{6} and \frac{7}{8} to fractions with denominator 24.
\frac{20+21}{24}\times \frac{36}{41}+\frac{16}{25}\left(\frac{3}{4}-\frac{5}{8}\right)\times \frac{5}{4}
Since \frac{20}{24} and \frac{21}{24} have the same denominator, add them by adding their numerators.
\frac{41}{24}\times \frac{36}{41}+\frac{16}{25}\left(\frac{3}{4}-\frac{5}{8}\right)\times \frac{5}{4}
Add 20 and 21 to get 41.
\frac{41\times 36}{24\times 41}+\frac{16}{25}\left(\frac{3}{4}-\frac{5}{8}\right)\times \frac{5}{4}
Multiply \frac{41}{24} times \frac{36}{41} by multiplying numerator times numerator and denominator times denominator.
\frac{36}{24}+\frac{16}{25}\left(\frac{3}{4}-\frac{5}{8}\right)\times \frac{5}{4}
Cancel out 41 in both numerator and denominator.
\frac{3}{2}+\frac{16}{25}\left(\frac{3}{4}-\frac{5}{8}\right)\times \frac{5}{4}
Reduce the fraction \frac{36}{24} to lowest terms by extracting and canceling out 12.
\frac{3}{2}+\frac{16}{25}\left(\frac{6}{8}-\frac{5}{8}\right)\times \frac{5}{4}
Least common multiple of 4 and 8 is 8. Convert \frac{3}{4} and \frac{5}{8} to fractions with denominator 8.
\frac{3}{2}+\frac{16}{25}\times \frac{6-5}{8}\times \frac{5}{4}
Since \frac{6}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}+\frac{16}{25}\times \frac{1}{8}\times \frac{5}{4}
Subtract 5 from 6 to get 1.
\frac{3}{2}+\frac{16\times 1}{25\times 8}\times \frac{5}{4}
Multiply \frac{16}{25} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}+\frac{16}{200}\times \frac{5}{4}
Do the multiplications in the fraction \frac{16\times 1}{25\times 8}.
\frac{3}{2}+\frac{2}{25}\times \frac{5}{4}
Reduce the fraction \frac{16}{200} to lowest terms by extracting and canceling out 8.
\frac{3}{2}+\frac{2\times 5}{25\times 4}
Multiply \frac{2}{25} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}+\frac{10}{100}
Do the multiplications in the fraction \frac{2\times 5}{25\times 4}.
\frac{3}{2}+\frac{1}{10}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\frac{15}{10}+\frac{1}{10}
Least common multiple of 2 and 10 is 10. Convert \frac{3}{2} and \frac{1}{10} to fractions with denominator 10.
\frac{15+1}{10}
Since \frac{15}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{16}{10}
Add 15 and 1 to get 16.
\frac{8}{5}
Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}