Evaluate
-\frac{\left(xy\right)^{2}}{9}
Expand
-\frac{\left(xy\right)^{2}}{9}
Share
Copied to clipboard
\left(\frac{5}{12}x+\frac{1}{2}x\right)\left(\frac{10}{11}xy-xy\right)\left(\frac{1}{3}y+y\right)
Combine \frac{5}{4}x and -\frac{5}{6}x to get \frac{5}{12}x.
\frac{11}{12}x\left(\frac{10}{11}xy-xy\right)\left(\frac{1}{3}y+y\right)
Combine \frac{5}{12}x and \frac{1}{2}x to get \frac{11}{12}x.
\frac{11}{12}x\left(-\frac{1}{11}\right)xy\left(\frac{1}{3}y+y\right)
Combine \frac{10}{11}xy and -xy to get -\frac{1}{11}xy.
\frac{11\left(-1\right)}{12\times 11}xxy\left(\frac{1}{3}y+y\right)
Multiply \frac{11}{12} times -\frac{1}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{12}xxy\left(\frac{1}{3}y+y\right)
Cancel out 11 in both numerator and denominator.
-\frac{1}{12}xxy\left(\frac{1}{3}y+y\right)
Fraction \frac{-1}{12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
-\frac{1}{12}x^{2}y\left(\frac{1}{3}y+y\right)
Multiply x and x to get x^{2}.
-\frac{1}{12}x^{2}y\times \frac{4}{3}y
Combine \frac{1}{3}y and y to get \frac{4}{3}y.
\frac{-4}{12\times 3}x^{2}yy
Multiply -\frac{1}{12} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-4}{36}x^{2}yy
Do the multiplications in the fraction \frac{-4}{12\times 3}.
-\frac{1}{9}x^{2}yy
Reduce the fraction \frac{-4}{36} to lowest terms by extracting and canceling out 4.
-\frac{1}{9}x^{2}y^{2}
Multiply y and y to get y^{2}.
\left(\frac{5}{12}x+\frac{1}{2}x\right)\left(\frac{10}{11}xy-xy\right)\left(\frac{1}{3}y+y\right)
Combine \frac{5}{4}x and -\frac{5}{6}x to get \frac{5}{12}x.
\frac{11}{12}x\left(\frac{10}{11}xy-xy\right)\left(\frac{1}{3}y+y\right)
Combine \frac{5}{12}x and \frac{1}{2}x to get \frac{11}{12}x.
\frac{11}{12}x\left(-\frac{1}{11}\right)xy\left(\frac{1}{3}y+y\right)
Combine \frac{10}{11}xy and -xy to get -\frac{1}{11}xy.
\frac{11\left(-1\right)}{12\times 11}xxy\left(\frac{1}{3}y+y\right)
Multiply \frac{11}{12} times -\frac{1}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{12}xxy\left(\frac{1}{3}y+y\right)
Cancel out 11 in both numerator and denominator.
-\frac{1}{12}xxy\left(\frac{1}{3}y+y\right)
Fraction \frac{-1}{12} can be rewritten as -\frac{1}{12} by extracting the negative sign.
-\frac{1}{12}x^{2}y\left(\frac{1}{3}y+y\right)
Multiply x and x to get x^{2}.
-\frac{1}{12}x^{2}y\times \frac{4}{3}y
Combine \frac{1}{3}y and y to get \frac{4}{3}y.
\frac{-4}{12\times 3}x^{2}yy
Multiply -\frac{1}{12} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-4}{36}x^{2}yy
Do the multiplications in the fraction \frac{-4}{12\times 3}.
-\frac{1}{9}x^{2}yy
Reduce the fraction \frac{-4}{36} to lowest terms by extracting and canceling out 4.
-\frac{1}{9}x^{2}y^{2}
Multiply y and y to get y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}