Solve for x
x = \frac{\sqrt{601} - 11}{4} \approx 3.378825336
x=\frac{-\sqrt{601}-11}{4}\approx -8.878825336
Graph
Share
Copied to clipboard
\left(\frac{5}{4}\right)^{2}x^{2}-\left(5-\frac{3}{4}x\right)^{2}=2x-4+9
Expand \left(\frac{5}{4}x\right)^{2}.
\frac{25}{16}x^{2}-\left(5-\frac{3}{4}x\right)^{2}=2x-4+9
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
\frac{25}{16}x^{2}-\left(25-\frac{15}{2}x+\frac{9}{16}x^{2}\right)=2x-4+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\frac{3}{4}x\right)^{2}.
\frac{25}{16}x^{2}-25+\frac{15}{2}x-\frac{9}{16}x^{2}=2x-4+9
To find the opposite of 25-\frac{15}{2}x+\frac{9}{16}x^{2}, find the opposite of each term.
x^{2}-25+\frac{15}{2}x=2x-4+9
Combine \frac{25}{16}x^{2} and -\frac{9}{16}x^{2} to get x^{2}.
x^{2}-25+\frac{15}{2}x=2x+5
Add -4 and 9 to get 5.
x^{2}-25+\frac{15}{2}x-2x=5
Subtract 2x from both sides.
x^{2}-25+\frac{11}{2}x=5
Combine \frac{15}{2}x and -2x to get \frac{11}{2}x.
x^{2}-25+\frac{11}{2}x-5=0
Subtract 5 from both sides.
x^{2}-30+\frac{11}{2}x=0
Subtract 5 from -25 to get -30.
x^{2}+\frac{11}{2}x-30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{11}{2}±\sqrt{\left(\frac{11}{2}\right)^{2}-4\left(-30\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{11}{2} for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{11}{2}±\sqrt{\frac{121}{4}-4\left(-30\right)}}{2}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{11}{2}±\sqrt{\frac{121}{4}+120}}{2}
Multiply -4 times -30.
x=\frac{-\frac{11}{2}±\sqrt{\frac{601}{4}}}{2}
Add \frac{121}{4} to 120.
x=\frac{-\frac{11}{2}±\frac{\sqrt{601}}{2}}{2}
Take the square root of \frac{601}{4}.
x=\frac{\sqrt{601}-11}{2\times 2}
Now solve the equation x=\frac{-\frac{11}{2}±\frac{\sqrt{601}}{2}}{2} when ± is plus. Add -\frac{11}{2} to \frac{\sqrt{601}}{2}.
x=\frac{\sqrt{601}-11}{4}
Divide \frac{-11+\sqrt{601}}{2} by 2.
x=\frac{-\sqrt{601}-11}{2\times 2}
Now solve the equation x=\frac{-\frac{11}{2}±\frac{\sqrt{601}}{2}}{2} when ± is minus. Subtract \frac{\sqrt{601}}{2} from -\frac{11}{2}.
x=\frac{-\sqrt{601}-11}{4}
Divide \frac{-11-\sqrt{601}}{2} by 2.
x=\frac{\sqrt{601}-11}{4} x=\frac{-\sqrt{601}-11}{4}
The equation is now solved.
\left(\frac{5}{4}\right)^{2}x^{2}-\left(5-\frac{3}{4}x\right)^{2}=2x-4+9
Expand \left(\frac{5}{4}x\right)^{2}.
\frac{25}{16}x^{2}-\left(5-\frac{3}{4}x\right)^{2}=2x-4+9
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
\frac{25}{16}x^{2}-\left(25-\frac{15}{2}x+\frac{9}{16}x^{2}\right)=2x-4+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\frac{3}{4}x\right)^{2}.
\frac{25}{16}x^{2}-25+\frac{15}{2}x-\frac{9}{16}x^{2}=2x-4+9
To find the opposite of 25-\frac{15}{2}x+\frac{9}{16}x^{2}, find the opposite of each term.
x^{2}-25+\frac{15}{2}x=2x-4+9
Combine \frac{25}{16}x^{2} and -\frac{9}{16}x^{2} to get x^{2}.
x^{2}-25+\frac{15}{2}x=2x+5
Add -4 and 9 to get 5.
x^{2}-25+\frac{15}{2}x-2x=5
Subtract 2x from both sides.
x^{2}-25+\frac{11}{2}x=5
Combine \frac{15}{2}x and -2x to get \frac{11}{2}x.
x^{2}+\frac{11}{2}x=5+25
Add 25 to both sides.
x^{2}+\frac{11}{2}x=30
Add 5 and 25 to get 30.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=30+\left(\frac{11}{4}\right)^{2}
Divide \frac{11}{2}, the coefficient of the x term, by 2 to get \frac{11}{4}. Then add the square of \frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{2}x+\frac{121}{16}=30+\frac{121}{16}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{601}{16}
Add 30 to \frac{121}{16}.
\left(x+\frac{11}{4}\right)^{2}=\frac{601}{16}
Factor x^{2}+\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{601}{16}}
Take the square root of both sides of the equation.
x+\frac{11}{4}=\frac{\sqrt{601}}{4} x+\frac{11}{4}=-\frac{\sqrt{601}}{4}
Simplify.
x=\frac{\sqrt{601}-11}{4} x=\frac{-\sqrt{601}-11}{4}
Subtract \frac{11}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}