Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\frac{5}{4}-x=x\times \frac{\frac{21}{8}}{\frac{7}{4}}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{5}{4}-x=x\times \frac{21}{8}\times \frac{4}{7}
Divide \frac{21}{8} by \frac{7}{4} by multiplying \frac{21}{8} by the reciprocal of \frac{7}{4}.
\frac{5}{4}-x=x\times \frac{21\times 4}{8\times 7}
Multiply \frac{21}{8} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}-x=x\times \frac{84}{56}
Do the multiplications in the fraction \frac{21\times 4}{8\times 7}.
\frac{5}{4}-x=x\times \frac{3}{2}
Reduce the fraction \frac{84}{56} to lowest terms by extracting and canceling out 28.
\frac{5}{4}-x-x\times \frac{3}{2}=0
Subtract x\times \frac{3}{2} from both sides.
\frac{5}{4}-\frac{5}{2}x=0
Combine -x and -x\times \frac{3}{2} to get -\frac{5}{2}x.
-\frac{5}{2}x=-\frac{5}{4}
Subtract \frac{5}{4} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{5}{4}\left(-\frac{2}{5}\right)
Multiply both sides by -\frac{2}{5}, the reciprocal of -\frac{5}{2}.
x=\frac{-5\left(-2\right)}{4\times 5}
Multiply -\frac{5}{4} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{10}{20}
Do the multiplications in the fraction \frac{-5\left(-2\right)}{4\times 5}.
x=\frac{1}{2}
Reduce the fraction \frac{10}{20} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}