Evaluate
-\frac{31}{60}\approx -0.516666667
Factor
-\frac{31}{60} = -0.5166666666666667
Share
Copied to clipboard
\frac{5}{4}-\frac{3\times 4}{8\times 9}-\frac{4}{5}\times \frac{2}{1}
Multiply \frac{3}{8} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}-\frac{12}{72}-\frac{4}{5}\times \frac{2}{1}
Do the multiplications in the fraction \frac{3\times 4}{8\times 9}.
\frac{5}{4}-\frac{1}{6}-\frac{4}{5}\times \frac{2}{1}
Reduce the fraction \frac{12}{72} to lowest terms by extracting and canceling out 12.
\frac{15}{12}-\frac{2}{12}-\frac{4}{5}\times \frac{2}{1}
Least common multiple of 4 and 6 is 12. Convert \frac{5}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{15-2}{12}-\frac{4}{5}\times \frac{2}{1}
Since \frac{15}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{12}-\frac{4}{5}\times \frac{2}{1}
Subtract 2 from 15 to get 13.
\frac{13}{12}-\frac{4}{5}\times 2
Anything divided by one gives itself.
\frac{13}{12}-\frac{4\times 2}{5}
Express \frac{4}{5}\times 2 as a single fraction.
\frac{13}{12}-\frac{8}{5}
Multiply 4 and 2 to get 8.
\frac{65}{60}-\frac{96}{60}
Least common multiple of 12 and 5 is 60. Convert \frac{13}{12} and \frac{8}{5} to fractions with denominator 60.
\frac{65-96}{60}
Since \frac{65}{60} and \frac{96}{60} have the same denominator, subtract them by subtracting their numerators.
-\frac{31}{60}
Subtract 96 from 65 to get -31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}