Evaluate
-\frac{1}{2}=-0.5
Factor
-\frac{1}{2} = -0.5
Share
Copied to clipboard
\left(\frac{15}{12}-\frac{22}{12}\right)\times \frac{20}{7}+\frac{7}{6}
Least common multiple of 4 and 6 is 12. Convert \frac{5}{4} and \frac{11}{6} to fractions with denominator 12.
\frac{15-22}{12}\times \frac{20}{7}+\frac{7}{6}
Since \frac{15}{12} and \frac{22}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{12}\times \frac{20}{7}+\frac{7}{6}
Subtract 22 from 15 to get -7.
\frac{-7\times 20}{12\times 7}+\frac{7}{6}
Multiply -\frac{7}{12} times \frac{20}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-140}{84}+\frac{7}{6}
Do the multiplications in the fraction \frac{-7\times 20}{12\times 7}.
-\frac{5}{3}+\frac{7}{6}
Reduce the fraction \frac{-140}{84} to lowest terms by extracting and canceling out 28.
-\frac{10}{6}+\frac{7}{6}
Least common multiple of 3 and 6 is 6. Convert -\frac{5}{3} and \frac{7}{6} to fractions with denominator 6.
\frac{-10+7}{6}
Since -\frac{10}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
\frac{-3}{6}
Add -10 and 7 to get -3.
-\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}