Evaluate
-3
Factor
-3
Share
Copied to clipboard
\frac{10}{6}-\frac{21}{6}+\frac{3}{2}-\frac{8}{3}
Least common multiple of 3 and 2 is 6. Convert \frac{5}{3} and \frac{7}{2} to fractions with denominator 6.
\frac{10-21}{6}+\frac{3}{2}-\frac{8}{3}
Since \frac{10}{6} and \frac{21}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{6}+\frac{3}{2}-\frac{8}{3}
Subtract 21 from 10 to get -11.
-\frac{11}{6}+\frac{9}{6}-\frac{8}{3}
Least common multiple of 6 and 2 is 6. Convert -\frac{11}{6} and \frac{3}{2} to fractions with denominator 6.
\frac{-11+9}{6}-\frac{8}{3}
Since -\frac{11}{6} and \frac{9}{6} have the same denominator, add them by adding their numerators.
\frac{-2}{6}-\frac{8}{3}
Add -11 and 9 to get -2.
-\frac{1}{3}-\frac{8}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{-1-8}{3}
Since -\frac{1}{3} and \frac{8}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-9}{3}
Subtract 8 from -1 to get -9.
-3
Divide -9 by 3 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}