Solve for y
y=\frac{\sqrt{1885}}{29}-2\approx -0.502876321
y=-\frac{\sqrt{1885}}{29}-2\approx -3.497123679
Graph
Share
Copied to clipboard
\frac{25}{4}y^{2}+\frac{35}{2}y+\frac{49}{4}+y^{2}+3\left(\frac{5}{2}y+\frac{1}{2}\right)+4y-1=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{5}{2}y+\frac{7}{2}\right)^{2}.
\frac{29}{4}y^{2}+\frac{35}{2}y+\frac{49}{4}+3\left(\frac{5}{2}y+\frac{1}{2}\right)+4y-1=0
Combine \frac{25}{4}y^{2} and y^{2} to get \frac{29}{4}y^{2}.
\frac{29}{4}y^{2}+\frac{35}{2}y+\frac{49}{4}+\frac{15}{2}y+\frac{3}{2}+4y-1=0
Use the distributive property to multiply 3 by \frac{5}{2}y+\frac{1}{2}.
\frac{29}{4}y^{2}+25y+\frac{49}{4}+\frac{3}{2}+4y-1=0
Combine \frac{35}{2}y and \frac{15}{2}y to get 25y.
\frac{29}{4}y^{2}+25y+\frac{55}{4}+4y-1=0
Add \frac{49}{4} and \frac{3}{2} to get \frac{55}{4}.
\frac{29}{4}y^{2}+29y+\frac{55}{4}-1=0
Combine 25y and 4y to get 29y.
\frac{29}{4}y^{2}+29y+\frac{51}{4}=0
Subtract 1 from \frac{55}{4} to get \frac{51}{4}.
y=\frac{-29±\sqrt{29^{2}-4\times \frac{29}{4}\times \frac{51}{4}}}{2\times \frac{29}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{29}{4} for a, 29 for b, and \frac{51}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-29±\sqrt{841-4\times \frac{29}{4}\times \frac{51}{4}}}{2\times \frac{29}{4}}
Square 29.
y=\frac{-29±\sqrt{841-29\times \frac{51}{4}}}{2\times \frac{29}{4}}
Multiply -4 times \frac{29}{4}.
y=\frac{-29±\sqrt{841-\frac{1479}{4}}}{2\times \frac{29}{4}}
Multiply -29 times \frac{51}{4}.
y=\frac{-29±\sqrt{\frac{1885}{4}}}{2\times \frac{29}{4}}
Add 841 to -\frac{1479}{4}.
y=\frac{-29±\frac{\sqrt{1885}}{2}}{2\times \frac{29}{4}}
Take the square root of \frac{1885}{4}.
y=\frac{-29±\frac{\sqrt{1885}}{2}}{\frac{29}{2}}
Multiply 2 times \frac{29}{4}.
y=\frac{\frac{\sqrt{1885}}{2}-29}{\frac{29}{2}}
Now solve the equation y=\frac{-29±\frac{\sqrt{1885}}{2}}{\frac{29}{2}} when ± is plus. Add -29 to \frac{\sqrt{1885}}{2}.
y=\frac{\sqrt{1885}}{29}-2
Divide -29+\frac{\sqrt{1885}}{2} by \frac{29}{2} by multiplying -29+\frac{\sqrt{1885}}{2} by the reciprocal of \frac{29}{2}.
y=\frac{-\frac{\sqrt{1885}}{2}-29}{\frac{29}{2}}
Now solve the equation y=\frac{-29±\frac{\sqrt{1885}}{2}}{\frac{29}{2}} when ± is minus. Subtract \frac{\sqrt{1885}}{2} from -29.
y=-\frac{\sqrt{1885}}{29}-2
Divide -29-\frac{\sqrt{1885}}{2} by \frac{29}{2} by multiplying -29-\frac{\sqrt{1885}}{2} by the reciprocal of \frac{29}{2}.
y=\frac{\sqrt{1885}}{29}-2 y=-\frac{\sqrt{1885}}{29}-2
The equation is now solved.
\frac{25}{4}y^{2}+\frac{35}{2}y+\frac{49}{4}+y^{2}+3\left(\frac{5}{2}y+\frac{1}{2}\right)+4y-1=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{5}{2}y+\frac{7}{2}\right)^{2}.
\frac{29}{4}y^{2}+\frac{35}{2}y+\frac{49}{4}+3\left(\frac{5}{2}y+\frac{1}{2}\right)+4y-1=0
Combine \frac{25}{4}y^{2} and y^{2} to get \frac{29}{4}y^{2}.
\frac{29}{4}y^{2}+\frac{35}{2}y+\frac{49}{4}+\frac{15}{2}y+\frac{3}{2}+4y-1=0
Use the distributive property to multiply 3 by \frac{5}{2}y+\frac{1}{2}.
\frac{29}{4}y^{2}+25y+\frac{49}{4}+\frac{3}{2}+4y-1=0
Combine \frac{35}{2}y and \frac{15}{2}y to get 25y.
\frac{29}{4}y^{2}+25y+\frac{55}{4}+4y-1=0
Add \frac{49}{4} and \frac{3}{2} to get \frac{55}{4}.
\frac{29}{4}y^{2}+29y+\frac{55}{4}-1=0
Combine 25y and 4y to get 29y.
\frac{29}{4}y^{2}+29y+\frac{51}{4}=0
Subtract 1 from \frac{55}{4} to get \frac{51}{4}.
\frac{29}{4}y^{2}+29y=-\frac{51}{4}
Subtract \frac{51}{4} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{29}{4}y^{2}+29y}{\frac{29}{4}}=-\frac{\frac{51}{4}}{\frac{29}{4}}
Divide both sides of the equation by \frac{29}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\frac{29}{\frac{29}{4}}y=-\frac{\frac{51}{4}}{\frac{29}{4}}
Dividing by \frac{29}{4} undoes the multiplication by \frac{29}{4}.
y^{2}+4y=-\frac{\frac{51}{4}}{\frac{29}{4}}
Divide 29 by \frac{29}{4} by multiplying 29 by the reciprocal of \frac{29}{4}.
y^{2}+4y=-\frac{51}{29}
Divide -\frac{51}{4} by \frac{29}{4} by multiplying -\frac{51}{4} by the reciprocal of \frac{29}{4}.
y^{2}+4y+2^{2}=-\frac{51}{29}+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+4y+4=-\frac{51}{29}+4
Square 2.
y^{2}+4y+4=\frac{65}{29}
Add -\frac{51}{29} to 4.
\left(y+2\right)^{2}=\frac{65}{29}
Factor y^{2}+4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+2\right)^{2}}=\sqrt{\frac{65}{29}}
Take the square root of both sides of the equation.
y+2=\frac{\sqrt{1885}}{29} y+2=-\frac{\sqrt{1885}}{29}
Simplify.
y=\frac{\sqrt{1885}}{29}-2 y=-\frac{\sqrt{1885}}{29}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}