Evaluate
-\frac{r^{2}}{9}+\frac{25}{4}
Expand
-\frac{r^{2}}{9}+\frac{25}{4}
Share
Copied to clipboard
\left(\frac{5\times 3}{6}-\frac{2r}{6}\right)\left(\frac{5}{2}+\frac{r}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{r}{3} times \frac{2}{2}.
\frac{5\times 3-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Since \frac{5\times 3}{6} and \frac{2r}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Do the multiplications in 5\times 3-2r.
\frac{15-2r}{6}\left(\frac{5\times 3}{6}+\frac{2r}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{r}{3} times \frac{2}{2}.
\frac{15-2r}{6}\times \frac{5\times 3+2r}{6}
Since \frac{5\times 3}{6} and \frac{2r}{6} have the same denominator, add them by adding their numerators.
\frac{15-2r}{6}\times \frac{15+2r}{6}
Do the multiplications in 5\times 3+2r.
\frac{\left(15-2r\right)\left(15+2r\right)}{6\times 6}
Multiply \frac{15-2r}{6} times \frac{15+2r}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(15-2r\right)\left(15+2r\right)}{36}
Multiply 6 and 6 to get 36.
\frac{15^{2}-\left(2r\right)^{2}}{36}
Consider \left(15-2r\right)\left(15+2r\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{225-\left(2r\right)^{2}}{36}
Calculate 15 to the power of 2 and get 225.
\frac{225-2^{2}r^{2}}{36}
Expand \left(2r\right)^{2}.
\frac{225-4r^{2}}{36}
Calculate 2 to the power of 2 and get 4.
\left(\frac{5\times 3}{6}-\frac{2r}{6}\right)\left(\frac{5}{2}+\frac{r}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{r}{3} times \frac{2}{2}.
\frac{5\times 3-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Since \frac{5\times 3}{6} and \frac{2r}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Do the multiplications in 5\times 3-2r.
\frac{15-2r}{6}\left(\frac{5\times 3}{6}+\frac{2r}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{r}{3} times \frac{2}{2}.
\frac{15-2r}{6}\times \frac{5\times 3+2r}{6}
Since \frac{5\times 3}{6} and \frac{2r}{6} have the same denominator, add them by adding their numerators.
\frac{15-2r}{6}\times \frac{15+2r}{6}
Do the multiplications in 5\times 3+2r.
\frac{\left(15-2r\right)\left(15+2r\right)}{6\times 6}
Multiply \frac{15-2r}{6} times \frac{15+2r}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(15-2r\right)\left(15+2r\right)}{36}
Multiply 6 and 6 to get 36.
\frac{15^{2}-\left(2r\right)^{2}}{36}
Consider \left(15-2r\right)\left(15+2r\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{225-\left(2r\right)^{2}}{36}
Calculate 15 to the power of 2 and get 225.
\frac{225-2^{2}r^{2}}{36}
Expand \left(2r\right)^{2}.
\frac{225-4r^{2}}{36}
Calculate 2 to the power of 2 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}