Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{5\times 3}{6}-\frac{2r}{6}\right)\left(\frac{5}{2}+\frac{r}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{r}{3} times \frac{2}{2}.
\frac{5\times 3-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Since \frac{5\times 3}{6} and \frac{2r}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Do the multiplications in 5\times 3-2r.
\frac{15-2r}{6}\left(\frac{5\times 3}{6}+\frac{2r}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{r}{3} times \frac{2}{2}.
\frac{15-2r}{6}\times \frac{5\times 3+2r}{6}
Since \frac{5\times 3}{6} and \frac{2r}{6} have the same denominator, add them by adding their numerators.
\frac{15-2r}{6}\times \frac{15+2r}{6}
Do the multiplications in 5\times 3+2r.
\frac{\left(15-2r\right)\left(15+2r\right)}{6\times 6}
Multiply \frac{15-2r}{6} times \frac{15+2r}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(15-2r\right)\left(15+2r\right)}{36}
Multiply 6 and 6 to get 36.
\frac{15^{2}-\left(2r\right)^{2}}{36}
Consider \left(15-2r\right)\left(15+2r\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{225-\left(2r\right)^{2}}{36}
Calculate 15 to the power of 2 and get 225.
\frac{225-2^{2}r^{2}}{36}
Expand \left(2r\right)^{2}.
\frac{225-4r^{2}}{36}
Calculate 2 to the power of 2 and get 4.
\left(\frac{5\times 3}{6}-\frac{2r}{6}\right)\left(\frac{5}{2}+\frac{r}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{r}{3} times \frac{2}{2}.
\frac{5\times 3-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Since \frac{5\times 3}{6} and \frac{2r}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15-2r}{6}\left(\frac{5}{2}+\frac{r}{3}\right)
Do the multiplications in 5\times 3-2r.
\frac{15-2r}{6}\left(\frac{5\times 3}{6}+\frac{2r}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5}{2} times \frac{3}{3}. Multiply \frac{r}{3} times \frac{2}{2}.
\frac{15-2r}{6}\times \frac{5\times 3+2r}{6}
Since \frac{5\times 3}{6} and \frac{2r}{6} have the same denominator, add them by adding their numerators.
\frac{15-2r}{6}\times \frac{15+2r}{6}
Do the multiplications in 5\times 3+2r.
\frac{\left(15-2r\right)\left(15+2r\right)}{6\times 6}
Multiply \frac{15-2r}{6} times \frac{15+2r}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(15-2r\right)\left(15+2r\right)}{36}
Multiply 6 and 6 to get 36.
\frac{15^{2}-\left(2r\right)^{2}}{36}
Consider \left(15-2r\right)\left(15+2r\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{225-\left(2r\right)^{2}}{36}
Calculate 15 to the power of 2 and get 225.
\frac{225-2^{2}r^{2}}{36}
Expand \left(2r\right)^{2}.
\frac{225-4r^{2}}{36}
Calculate 2 to the power of 2 and get 4.