Evaluate
-\frac{1009}{3456}\approx -0.291956019
Factor
-\frac{1009}{3456} = -0.29195601851851855
Share
Copied to clipboard
\left(\frac{15}{6}-\frac{2}{6}-\frac{7}{4}\right)\times \frac{5}{9}-\frac{\frac{1}{2}\times \frac{5}{4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{1}{3} to fractions with denominator 6.
\left(\frac{15-2}{6}-\frac{7}{4}\right)\times \frac{5}{9}-\frac{\frac{1}{2}\times \frac{5}{4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Since \frac{15}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{13}{6}-\frac{7}{4}\right)\times \frac{5}{9}-\frac{\frac{1}{2}\times \frac{5}{4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Subtract 2 from 15 to get 13.
\left(\frac{26}{12}-\frac{21}{12}\right)\times \frac{5}{9}-\frac{\frac{1}{2}\times \frac{5}{4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Least common multiple of 6 and 4 is 12. Convert \frac{13}{6} and \frac{7}{4} to fractions with denominator 12.
\frac{26-21}{12}\times \frac{5}{9}-\frac{\frac{1}{2}\times \frac{5}{4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Since \frac{26}{12} and \frac{21}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}\times \frac{5}{9}-\frac{\frac{1}{2}\times \frac{5}{4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Subtract 21 from 26 to get 5.
\frac{5\times 5}{12\times 9}-\frac{\frac{1}{2}\times \frac{5}{4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Multiply \frac{5}{12} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{108}-\frac{\frac{1}{2}\times \frac{5}{4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Do the multiplications in the fraction \frac{5\times 5}{12\times 9}.
\frac{25}{108}-\frac{\frac{1\times 5}{2\times 4}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Multiply \frac{1}{2} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{108}-\frac{\frac{5}{8}-\frac{\frac{2}{3}}{10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Do the multiplications in the fraction \frac{1\times 5}{2\times 4}.
\frac{25}{108}-\frac{\frac{5}{8}-\frac{2}{3\times 10}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Express \frac{\frac{2}{3}}{10} as a single fraction.
\frac{25}{108}-\frac{\frac{5}{8}-\frac{2}{30}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Multiply 3 and 10 to get 30.
\frac{25}{108}-\frac{\frac{5}{8}-\frac{1}{15}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Reduce the fraction \frac{2}{30} to lowest terms by extracting and canceling out 2.
\frac{25}{108}-\frac{\frac{75}{120}-\frac{8}{120}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Least common multiple of 8 and 15 is 120. Convert \frac{5}{8} and \frac{1}{15} to fractions with denominator 120.
\frac{25}{108}-\frac{\frac{75-8}{120}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Since \frac{75}{120} and \frac{8}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{108}-\frac{\frac{67}{120}}{\frac{2}{5}+\frac{\frac{1}{2}}{\frac{3}{4}}}
Subtract 8 from 75 to get 67.
\frac{25}{108}-\frac{\frac{67}{120}}{\frac{2}{5}+\frac{1}{2}\times \frac{4}{3}}
Divide \frac{1}{2} by \frac{3}{4} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{4}.
\frac{25}{108}-\frac{\frac{67}{120}}{\frac{2}{5}+\frac{1\times 4}{2\times 3}}
Multiply \frac{1}{2} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{108}-\frac{\frac{67}{120}}{\frac{2}{5}+\frac{4}{6}}
Do the multiplications in the fraction \frac{1\times 4}{2\times 3}.
\frac{25}{108}-\frac{\frac{67}{120}}{\frac{2}{5}+\frac{2}{3}}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{25}{108}-\frac{\frac{67}{120}}{\frac{6}{15}+\frac{10}{15}}
Least common multiple of 5 and 3 is 15. Convert \frac{2}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{25}{108}-\frac{\frac{67}{120}}{\frac{6+10}{15}}
Since \frac{6}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{25}{108}-\frac{\frac{67}{120}}{\frac{16}{15}}
Add 6 and 10 to get 16.
\frac{25}{108}-\frac{67}{120}\times \frac{15}{16}
Divide \frac{67}{120} by \frac{16}{15} by multiplying \frac{67}{120} by the reciprocal of \frac{16}{15}.
\frac{25}{108}-\frac{67\times 15}{120\times 16}
Multiply \frac{67}{120} times \frac{15}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{25}{108}-\frac{1005}{1920}
Do the multiplications in the fraction \frac{67\times 15}{120\times 16}.
\frac{25}{108}-\frac{67}{128}
Reduce the fraction \frac{1005}{1920} to lowest terms by extracting and canceling out 15.
\frac{800}{3456}-\frac{1809}{3456}
Least common multiple of 108 and 128 is 3456. Convert \frac{25}{108} and \frac{67}{128} to fractions with denominator 3456.
\frac{800-1809}{3456}
Since \frac{800}{3456} and \frac{1809}{3456} have the same denominator, subtract them by subtracting their numerators.
-\frac{1009}{3456}
Subtract 1809 from 800 to get -1009.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}