Evaluate
\frac{1879}{1680}\approx 1.118452381
Factor
\frac{1879}{2 ^ {4} \cdot 3 \cdot 5 \cdot 7} = 1\frac{199}{1680} = 1.118452380952381
Share
Copied to clipboard
\frac{5\times 3}{2\times 25}+\frac{6}{2}\times \frac{3}{36}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Multiply \frac{5}{2} times \frac{3}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{15}{50}+\frac{6}{2}\times \frac{3}{36}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Do the multiplications in the fraction \frac{5\times 3}{2\times 25}.
\frac{3}{10}+\frac{6}{2}\times \frac{3}{36}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Reduce the fraction \frac{15}{50} to lowest terms by extracting and canceling out 5.
\frac{3}{10}+3\times \frac{3}{36}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Divide 6 by 2 to get 3.
\frac{3}{10}+3\times \frac{1}{12}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Reduce the fraction \frac{3}{36} to lowest terms by extracting and canceling out 3.
\frac{3}{10}+\frac{3}{12}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Multiply 3 and \frac{1}{12} to get \frac{3}{12}.
\frac{3}{10}+\frac{1}{4}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{6}{20}+\frac{5}{20}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Least common multiple of 10 and 4 is 20. Convert \frac{3}{10} and \frac{1}{4} to fractions with denominator 20.
\frac{6+5}{20}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Since \frac{6}{20} and \frac{5}{20} have the same denominator, add them by adding their numerators.
\frac{11}{20}+\frac{7}{2}\times \frac{3}{49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Add 6 and 5 to get 11.
\frac{11}{20}+\frac{7\times 3}{2\times 49}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Multiply \frac{7}{2} times \frac{3}{49} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{20}+\frac{21}{98}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Do the multiplications in the fraction \frac{7\times 3}{2\times 49}.
\frac{11}{20}+\frac{3}{14}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Reduce the fraction \frac{21}{98} to lowest terms by extracting and canceling out 7.
\frac{77}{140}+\frac{30}{140}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Least common multiple of 20 and 14 is 140. Convert \frac{11}{20} and \frac{3}{14} to fractions with denominator 140.
\frac{77+30}{140}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Since \frac{77}{140} and \frac{30}{140} have the same denominator, add them by adding their numerators.
\frac{107}{140}+\frac{8}{2}\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Add 77 and 30 to get 107.
\frac{107}{140}+4\times \frac{3}{64}+\frac{9}{2}\times \frac{3}{81}
Divide 8 by 2 to get 4.
\frac{107}{140}+\frac{4\times 3}{64}+\frac{9}{2}\times \frac{3}{81}
Express 4\times \frac{3}{64} as a single fraction.
\frac{107}{140}+\frac{12}{64}+\frac{9}{2}\times \frac{3}{81}
Multiply 4 and 3 to get 12.
\frac{107}{140}+\frac{3}{16}+\frac{9}{2}\times \frac{3}{81}
Reduce the fraction \frac{12}{64} to lowest terms by extracting and canceling out 4.
\frac{428}{560}+\frac{105}{560}+\frac{9}{2}\times \frac{3}{81}
Least common multiple of 140 and 16 is 560. Convert \frac{107}{140} and \frac{3}{16} to fractions with denominator 560.
\frac{428+105}{560}+\frac{9}{2}\times \frac{3}{81}
Since \frac{428}{560} and \frac{105}{560} have the same denominator, add them by adding their numerators.
\frac{533}{560}+\frac{9}{2}\times \frac{3}{81}
Add 428 and 105 to get 533.
\frac{533}{560}+\frac{9}{2}\times \frac{1}{27}
Reduce the fraction \frac{3}{81} to lowest terms by extracting and canceling out 3.
\frac{533}{560}+\frac{9\times 1}{2\times 27}
Multiply \frac{9}{2} times \frac{1}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{533}{560}+\frac{9}{54}
Do the multiplications in the fraction \frac{9\times 1}{2\times 27}.
\frac{533}{560}+\frac{1}{6}
Reduce the fraction \frac{9}{54} to lowest terms by extracting and canceling out 9.
\frac{1599}{1680}+\frac{280}{1680}
Least common multiple of 560 and 6 is 1680. Convert \frac{533}{560} and \frac{1}{6} to fractions with denominator 1680.
\frac{1599+280}{1680}
Since \frac{1599}{1680} and \frac{280}{1680} have the same denominator, add them by adding their numerators.
\frac{1879}{1680}
Add 1599 and 280 to get 1879.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}