Evaluate
\frac{11\sqrt{3}}{3}+\frac{33\sqrt{15}}{20}\approx 12.741275482
Factor
\frac{11 \sqrt{3} {(9 \sqrt{5} + 20)}}{60} = 12.74127548232812
Share
Copied to clipboard
\left(\frac{5\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}+\frac{2\sqrt{5}}{5}+2\right)\times \frac{55}{2\sqrt{75}}
Rationalize the denominator of \frac{5}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(\frac{5\sqrt{5}}{2\times 5}+\frac{2\sqrt{5}}{5}+2\right)\times \frac{55}{2\sqrt{75}}
The square of \sqrt{5} is 5.
\left(\frac{\sqrt{5}}{2}+\frac{2\sqrt{5}}{5}+2\right)\times \frac{55}{2\sqrt{75}}
Cancel out 5 in both numerator and denominator.
\left(\frac{9}{10}\sqrt{5}+2\right)\times \frac{55}{2\sqrt{75}}
Combine \frac{\sqrt{5}}{2} and \frac{2\sqrt{5}}{5} to get \frac{9}{10}\sqrt{5}.
\left(\frac{9}{10}\sqrt{5}+2\right)\times \frac{55}{2\times 5\sqrt{3}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\left(\frac{9}{10}\sqrt{5}+2\right)\times \frac{55}{10\sqrt{3}}
Multiply 2 and 5 to get 10.
\left(\frac{9}{10}\sqrt{5}+2\right)\times \frac{55\sqrt{3}}{10\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{55}{10\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{9}{10}\sqrt{5}+2\right)\times \frac{55\sqrt{3}}{10\times 3}
The square of \sqrt{3} is 3.
\left(\frac{9}{10}\sqrt{5}+2\right)\times \frac{11\sqrt{3}}{2\times 3}
Cancel out 5 in both numerator and denominator.
\left(\frac{9}{10}\sqrt{5}+2\right)\times \frac{11\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
\frac{9}{10}\sqrt{5}\times \frac{11\sqrt{3}}{6}+2\times \frac{11\sqrt{3}}{6}
Use the distributive property to multiply \frac{9}{10}\sqrt{5}+2 by \frac{11\sqrt{3}}{6}.
\frac{9\times 11\sqrt{3}}{10\times 6}\sqrt{5}+2\times \frac{11\sqrt{3}}{6}
Multiply \frac{9}{10} times \frac{11\sqrt{3}}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 11\sqrt{3}}{2\times 10}\sqrt{5}+2\times \frac{11\sqrt{3}}{6}
Cancel out 3 in both numerator and denominator.
\frac{3\times 11\sqrt{3}}{2\times 10}\sqrt{5}+\frac{11\sqrt{3}}{3}
Cancel out 6, the greatest common factor in 2 and 6.
\frac{33\sqrt{3}}{2\times 10}\sqrt{5}+\frac{11\sqrt{3}}{3}
Multiply 3 and 11 to get 33.
\frac{33\sqrt{3}}{20}\sqrt{5}+\frac{11\sqrt{3}}{3}
Multiply 2 and 10 to get 20.
\frac{33\sqrt{3}\sqrt{5}}{20}+\frac{11\sqrt{3}}{3}
Express \frac{33\sqrt{3}}{20}\sqrt{5} as a single fraction.
\frac{3\times 33\sqrt{3}\sqrt{5}}{60}+\frac{20\times 11\sqrt{3}}{60}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 20 and 3 is 60. Multiply \frac{33\sqrt{3}\sqrt{5}}{20} times \frac{3}{3}. Multiply \frac{11\sqrt{3}}{3} times \frac{20}{20}.
\frac{3\times 33\sqrt{3}\sqrt{5}+20\times 11\sqrt{3}}{60}
Since \frac{3\times 33\sqrt{3}\sqrt{5}}{60} and \frac{20\times 11\sqrt{3}}{60} have the same denominator, add them by adding their numerators.
\frac{99\sqrt{15}+220\sqrt{3}}{60}
Do the multiplications in 3\times 33\sqrt{3}\sqrt{5}+20\times 11\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}