Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{25}{169}+x^{2}=1
Calculate \frac{5}{13} to the power of 2 and get \frac{25}{169}.
\frac{25}{169}+x^{2}-1=0
Subtract 1 from both sides.
-\frac{144}{169}+x^{2}=0
Subtract 1 from \frac{25}{169} to get -\frac{144}{169}.
-144+169x^{2}=0
Multiply both sides by 169.
\left(13x-12\right)\left(13x+12\right)=0
Consider -144+169x^{2}. Rewrite -144+169x^{2} as \left(13x\right)^{2}-12^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{12}{13} x=-\frac{12}{13}
To find equation solutions, solve 13x-12=0 and 13x+12=0.
\frac{25}{169}+x^{2}=1
Calculate \frac{5}{13} to the power of 2 and get \frac{25}{169}.
x^{2}=1-\frac{25}{169}
Subtract \frac{25}{169} from both sides.
x^{2}=\frac{144}{169}
Subtract \frac{25}{169} from 1 to get \frac{144}{169}.
x=\frac{12}{13} x=-\frac{12}{13}
Take the square root of both sides of the equation.
\frac{25}{169}+x^{2}=1
Calculate \frac{5}{13} to the power of 2 and get \frac{25}{169}.
\frac{25}{169}+x^{2}-1=0
Subtract 1 from both sides.
-\frac{144}{169}+x^{2}=0
Subtract 1 from \frac{25}{169} to get -\frac{144}{169}.
x^{2}-\frac{144}{169}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{144}{169}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{144}{169} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{144}{169}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{576}{169}}}{2}
Multiply -4 times -\frac{144}{169}.
x=\frac{0±\frac{24}{13}}{2}
Take the square root of \frac{576}{169}.
x=\frac{12}{13}
Now solve the equation x=\frac{0±\frac{24}{13}}{2} when ± is plus.
x=-\frac{12}{13}
Now solve the equation x=\frac{0±\frac{24}{13}}{2} when ± is minus.
x=\frac{12}{13} x=-\frac{12}{13}
The equation is now solved.