Evaluate
\frac{x\left(x-4y\right)}{2}
Expand
-2xy+\frac{x^{2}}{2}
Share
Copied to clipboard
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{3}x^{2}+\frac{3}{2}xy-2xy+2y^{2}-\frac{1}{4}x^{2}-xy\right)\right)-\frac{1}{6}xy
To find the opposite of 2xy-2y^{2}+\frac{1}{4}x^{2}, find the opposite of each term.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{3}x^{2}-\frac{1}{2}xy+2y^{2}-\frac{1}{4}x^{2}-xy\right)\right)-\frac{1}{6}xy
Combine \frac{3}{2}xy and -2xy to get -\frac{1}{2}xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{12}x^{2}-\frac{1}{2}xy+2y^{2}-xy\right)\right)-\frac{1}{6}xy
Combine \frac{1}{3}x^{2} and -\frac{1}{4}x^{2} to get \frac{1}{12}x^{2}.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{12}x^{2}-\frac{3}{2}xy+2y^{2}\right)\right)-\frac{1}{6}xy
Combine -\frac{1}{2}xy and -xy to get -\frac{3}{2}xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\frac{1}{12}x^{2}+\frac{3}{2}xy-2y^{2}\right)-\frac{1}{6}xy
To find the opposite of \frac{1}{12}x^{2}-\frac{3}{2}xy+2y^{2}, find the opposite of each term.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(-\frac{1}{12}x^{2}+\frac{3}{2}xy\right)-\frac{1}{6}xy
Combine 2y^{2} and -2y^{2} to get 0.
\frac{5}{12}x^{2}-\frac{1}{3}xy+\frac{1}{12}x^{2}-\frac{3}{2}xy-\frac{1}{6}xy
To find the opposite of -\frac{1}{12}x^{2}+\frac{3}{2}xy, find the opposite of each term.
\frac{1}{2}x^{2}-\frac{1}{3}xy-\frac{3}{2}xy-\frac{1}{6}xy
Combine \frac{5}{12}x^{2} and \frac{1}{12}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-\frac{11}{6}xy-\frac{1}{6}xy
Combine -\frac{1}{3}xy and -\frac{3}{2}xy to get -\frac{11}{6}xy.
\frac{1}{2}x^{2}-2xy
Combine -\frac{11}{6}xy and -\frac{1}{6}xy to get -2xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{3}x^{2}+\frac{3}{2}xy-2xy+2y^{2}-\frac{1}{4}x^{2}-xy\right)\right)-\frac{1}{6}xy
To find the opposite of 2xy-2y^{2}+\frac{1}{4}x^{2}, find the opposite of each term.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{3}x^{2}-\frac{1}{2}xy+2y^{2}-\frac{1}{4}x^{2}-xy\right)\right)-\frac{1}{6}xy
Combine \frac{3}{2}xy and -2xy to get -\frac{1}{2}xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{12}x^{2}-\frac{1}{2}xy+2y^{2}-xy\right)\right)-\frac{1}{6}xy
Combine \frac{1}{3}x^{2} and -\frac{1}{4}x^{2} to get \frac{1}{12}x^{2}.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{12}x^{2}-\frac{3}{2}xy+2y^{2}\right)\right)-\frac{1}{6}xy
Combine -\frac{1}{2}xy and -xy to get -\frac{3}{2}xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\frac{1}{12}x^{2}+\frac{3}{2}xy-2y^{2}\right)-\frac{1}{6}xy
To find the opposite of \frac{1}{12}x^{2}-\frac{3}{2}xy+2y^{2}, find the opposite of each term.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(-\frac{1}{12}x^{2}+\frac{3}{2}xy\right)-\frac{1}{6}xy
Combine 2y^{2} and -2y^{2} to get 0.
\frac{5}{12}x^{2}-\frac{1}{3}xy+\frac{1}{12}x^{2}-\frac{3}{2}xy-\frac{1}{6}xy
To find the opposite of -\frac{1}{12}x^{2}+\frac{3}{2}xy, find the opposite of each term.
\frac{1}{2}x^{2}-\frac{1}{3}xy-\frac{3}{2}xy-\frac{1}{6}xy
Combine \frac{5}{12}x^{2} and \frac{1}{12}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-\frac{11}{6}xy-\frac{1}{6}xy
Combine -\frac{1}{3}xy and -\frac{3}{2}xy to get -\frac{11}{6}xy.
\frac{1}{2}x^{2}-2xy
Combine -\frac{11}{6}xy and -\frac{1}{6}xy to get -2xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}