Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{3}x^{2}+\frac{3}{2}xy-2xy+2y^{2}-\frac{1}{4}x^{2}-xy\right)\right)-\frac{1}{6}xy
To find the opposite of 2xy-2y^{2}+\frac{1}{4}x^{2}, find the opposite of each term.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{3}x^{2}-\frac{1}{2}xy+2y^{2}-\frac{1}{4}x^{2}-xy\right)\right)-\frac{1}{6}xy
Combine \frac{3}{2}xy and -2xy to get -\frac{1}{2}xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{12}x^{2}-\frac{1}{2}xy+2y^{2}-xy\right)\right)-\frac{1}{6}xy
Combine \frac{1}{3}x^{2} and -\frac{1}{4}x^{2} to get \frac{1}{12}x^{2}.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{12}x^{2}-\frac{3}{2}xy+2y^{2}\right)\right)-\frac{1}{6}xy
Combine -\frac{1}{2}xy and -xy to get -\frac{3}{2}xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\frac{1}{12}x^{2}+\frac{3}{2}xy-2y^{2}\right)-\frac{1}{6}xy
To find the opposite of \frac{1}{12}x^{2}-\frac{3}{2}xy+2y^{2}, find the opposite of each term.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(-\frac{1}{12}x^{2}+\frac{3}{2}xy\right)-\frac{1}{6}xy
Combine 2y^{2} and -2y^{2} to get 0.
\frac{5}{12}x^{2}-\frac{1}{3}xy+\frac{1}{12}x^{2}-\frac{3}{2}xy-\frac{1}{6}xy
To find the opposite of -\frac{1}{12}x^{2}+\frac{3}{2}xy, find the opposite of each term.
\frac{1}{2}x^{2}-\frac{1}{3}xy-\frac{3}{2}xy-\frac{1}{6}xy
Combine \frac{5}{12}x^{2} and \frac{1}{12}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-\frac{11}{6}xy-\frac{1}{6}xy
Combine -\frac{1}{3}xy and -\frac{3}{2}xy to get -\frac{11}{6}xy.
\frac{1}{2}x^{2}-2xy
Combine -\frac{11}{6}xy and -\frac{1}{6}xy to get -2xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{3}x^{2}+\frac{3}{2}xy-2xy+2y^{2}-\frac{1}{4}x^{2}-xy\right)\right)-\frac{1}{6}xy
To find the opposite of 2xy-2y^{2}+\frac{1}{4}x^{2}, find the opposite of each term.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{3}x^{2}-\frac{1}{2}xy+2y^{2}-\frac{1}{4}x^{2}-xy\right)\right)-\frac{1}{6}xy
Combine \frac{3}{2}xy and -2xy to get -\frac{1}{2}xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{12}x^{2}-\frac{1}{2}xy+2y^{2}-xy\right)\right)-\frac{1}{6}xy
Combine \frac{1}{3}x^{2} and -\frac{1}{4}x^{2} to get \frac{1}{12}x^{2}.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\left(\frac{1}{12}x^{2}-\frac{3}{2}xy+2y^{2}\right)\right)-\frac{1}{6}xy
Combine -\frac{1}{2}xy and -xy to get -\frac{3}{2}xy.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(2y^{2}-\frac{1}{12}x^{2}+\frac{3}{2}xy-2y^{2}\right)-\frac{1}{6}xy
To find the opposite of \frac{1}{12}x^{2}-\frac{3}{2}xy+2y^{2}, find the opposite of each term.
\frac{5}{12}x^{2}-\frac{1}{3}xy-\left(-\frac{1}{12}x^{2}+\frac{3}{2}xy\right)-\frac{1}{6}xy
Combine 2y^{2} and -2y^{2} to get 0.
\frac{5}{12}x^{2}-\frac{1}{3}xy+\frac{1}{12}x^{2}-\frac{3}{2}xy-\frac{1}{6}xy
To find the opposite of -\frac{1}{12}x^{2}+\frac{3}{2}xy, find the opposite of each term.
\frac{1}{2}x^{2}-\frac{1}{3}xy-\frac{3}{2}xy-\frac{1}{6}xy
Combine \frac{5}{12}x^{2} and \frac{1}{12}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-\frac{11}{6}xy-\frac{1}{6}xy
Combine -\frac{1}{3}xy and -\frac{3}{2}xy to get -\frac{11}{6}xy.
\frac{1}{2}x^{2}-2xy
Combine -\frac{11}{6}xy and -\frac{1}{6}xy to get -2xy.