Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(2+\sqrt{3}\right)}{\sqrt{3}}
Divide 5 by \frac{\sqrt{3}}{2+\sqrt{3}} by multiplying 5 by the reciprocal of \frac{\sqrt{3}}{2+\sqrt{3}}.
\frac{5\left(2+\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{5\left(2+\sqrt{3}\right)}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{5\left(2+\sqrt{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\left(10+5\sqrt{3}\right)\sqrt{3}}{3}
Use the distributive property to multiply 5 by 2+\sqrt{3}.
\frac{10\sqrt{3}+5\left(\sqrt{3}\right)^{2}}{3}
Use the distributive property to multiply 10+5\sqrt{3} by \sqrt{3}.
\frac{10\sqrt{3}+5\times 3}{3}
The square of \sqrt{3} is 3.
\frac{10\sqrt{3}+15}{3}
Multiply 5 and 3 to get 15.