Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{5\sqrt{330}}{12}-\frac{7\times 12}{12}\right)^{2}+4^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{12}{12}.
\left(\frac{5\sqrt{330}-7\times 12}{12}\right)^{2}+4^{2}
Since \frac{5\sqrt{330}}{12} and \frac{7\times 12}{12} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{5\sqrt{330}-84}{12}\right)^{2}+4^{2}
Do the multiplications in 5\sqrt{330}-7\times 12.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+4^{2}
To raise \frac{5\sqrt{330}-84}{12} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+16
Calculate 4 to the power of 2 and get 16.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+\frac{16\times 12^{2}}{12^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{12^{2}}{12^{2}}.
\frac{\left(5\sqrt{330}-84\right)^{2}+16\times 12^{2}}{12^{2}}
Since \frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}} and \frac{16\times 12^{2}}{12^{2}} have the same denominator, add them by adding their numerators.
\frac{25\left(\sqrt{330}\right)^{2}-840\sqrt{330}+7056}{12^{2}}+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{330}-84\right)^{2}.
\frac{25\times 330-840\sqrt{330}+7056}{12^{2}}+16
The square of \sqrt{330} is 330.
\frac{8250-840\sqrt{330}+7056}{12^{2}}+16
Multiply 25 and 330 to get 8250.
\frac{15306-840\sqrt{330}}{12^{2}}+16
Add 8250 and 7056 to get 15306.
\frac{15306-840\sqrt{330}}{144}+16
Calculate 12 to the power of 2 and get 144.
\frac{15306-840\sqrt{330}}{144}+\frac{16\times 144}{144}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{144}{144}.
\frac{15306-840\sqrt{330}+16\times 144}{144}
Since \frac{15306-840\sqrt{330}}{144} and \frac{16\times 144}{144} have the same denominator, add them by adding their numerators.
\frac{15306-840\sqrt{330}+2304}{144}
Do the multiplications in 15306-840\sqrt{330}+16\times 144.
\frac{17610-840\sqrt{330}}{144}
Do the calculations in 15306-840\sqrt{330}+2304.
\left(\frac{5\sqrt{330}}{12}-\frac{7\times 12}{12}\right)^{2}+4^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{12}{12}.
\left(\frac{5\sqrt{330}-7\times 12}{12}\right)^{2}+4^{2}
Since \frac{5\sqrt{330}}{12} and \frac{7\times 12}{12} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{5\sqrt{330}-84}{12}\right)^{2}+4^{2}
Do the multiplications in 5\sqrt{330}-7\times 12.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+4^{2}
To raise \frac{5\sqrt{330}-84}{12} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+16
Calculate 4 to the power of 2 and get 16.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+\frac{16\times 12^{2}}{12^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{12^{2}}{12^{2}}.
\frac{\left(5\sqrt{330}-84\right)^{2}+16\times 12^{2}}{12^{2}}
Since \frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}} and \frac{16\times 12^{2}}{12^{2}} have the same denominator, add them by adding their numerators.
\frac{25\left(\sqrt{330}\right)^{2}-840\sqrt{330}+7056}{12^{2}}+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{330}-84\right)^{2}.
\frac{25\times 330-840\sqrt{330}+7056}{12^{2}}+16
The square of \sqrt{330} is 330.
\frac{8250-840\sqrt{330}+7056}{12^{2}}+16
Multiply 25 and 330 to get 8250.
\frac{15306-840\sqrt{330}}{12^{2}}+16
Add 8250 and 7056 to get 15306.
\frac{15306-840\sqrt{330}}{144}+16
Calculate 12 to the power of 2 and get 144.
\frac{15306-840\sqrt{330}}{144}+\frac{16\times 144}{144}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{144}{144}.
\frac{15306-840\sqrt{330}+16\times 144}{144}
Since \frac{15306-840\sqrt{330}}{144} and \frac{16\times 144}{144} have the same denominator, add them by adding their numerators.
\frac{15306-840\sqrt{330}+2304}{144}
Do the multiplications in 15306-840\sqrt{330}+16\times 144.
\frac{17610-840\sqrt{330}}{144}
Do the calculations in 15306-840\sqrt{330}+2304.