Evaluate
-\frac{35\sqrt{330}}{6}+\frac{2935}{24}\approx 16.323904273
Expand
-\frac{35 \sqrt{330}}{6} + \frac{2935}{24} = 16.323904273
Share
Copied to clipboard
\left(\frac{5\sqrt{330}}{12}-\frac{7\times 12}{12}\right)^{2}+4^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{12}{12}.
\left(\frac{5\sqrt{330}-7\times 12}{12}\right)^{2}+4^{2}
Since \frac{5\sqrt{330}}{12} and \frac{7\times 12}{12} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{5\sqrt{330}-84}{12}\right)^{2}+4^{2}
Do the multiplications in 5\sqrt{330}-7\times 12.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+4^{2}
To raise \frac{5\sqrt{330}-84}{12} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+16
Calculate 4 to the power of 2 and get 16.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+\frac{16\times 12^{2}}{12^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{12^{2}}{12^{2}}.
\frac{\left(5\sqrt{330}-84\right)^{2}+16\times 12^{2}}{12^{2}}
Since \frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}} and \frac{16\times 12^{2}}{12^{2}} have the same denominator, add them by adding their numerators.
\frac{25\left(\sqrt{330}\right)^{2}-840\sqrt{330}+7056}{12^{2}}+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{330}-84\right)^{2}.
\frac{25\times 330-840\sqrt{330}+7056}{12^{2}}+16
The square of \sqrt{330} is 330.
\frac{8250-840\sqrt{330}+7056}{12^{2}}+16
Multiply 25 and 330 to get 8250.
\frac{15306-840\sqrt{330}}{12^{2}}+16
Add 8250 and 7056 to get 15306.
\frac{15306-840\sqrt{330}}{144}+16
Calculate 12 to the power of 2 and get 144.
\frac{15306-840\sqrt{330}}{144}+\frac{16\times 144}{144}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{144}{144}.
\frac{15306-840\sqrt{330}+16\times 144}{144}
Since \frac{15306-840\sqrt{330}}{144} and \frac{16\times 144}{144} have the same denominator, add them by adding their numerators.
\frac{15306-840\sqrt{330}+2304}{144}
Do the multiplications in 15306-840\sqrt{330}+16\times 144.
\frac{17610-840\sqrt{330}}{144}
Do the calculations in 15306-840\sqrt{330}+2304.
\left(\frac{5\sqrt{330}}{12}-\frac{7\times 12}{12}\right)^{2}+4^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7 times \frac{12}{12}.
\left(\frac{5\sqrt{330}-7\times 12}{12}\right)^{2}+4^{2}
Since \frac{5\sqrt{330}}{12} and \frac{7\times 12}{12} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{5\sqrt{330}-84}{12}\right)^{2}+4^{2}
Do the multiplications in 5\sqrt{330}-7\times 12.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+4^{2}
To raise \frac{5\sqrt{330}-84}{12} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+16
Calculate 4 to the power of 2 and get 16.
\frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}}+\frac{16\times 12^{2}}{12^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{12^{2}}{12^{2}}.
\frac{\left(5\sqrt{330}-84\right)^{2}+16\times 12^{2}}{12^{2}}
Since \frac{\left(5\sqrt{330}-84\right)^{2}}{12^{2}} and \frac{16\times 12^{2}}{12^{2}} have the same denominator, add them by adding their numerators.
\frac{25\left(\sqrt{330}\right)^{2}-840\sqrt{330}+7056}{12^{2}}+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{330}-84\right)^{2}.
\frac{25\times 330-840\sqrt{330}+7056}{12^{2}}+16
The square of \sqrt{330} is 330.
\frac{8250-840\sqrt{330}+7056}{12^{2}}+16
Multiply 25 and 330 to get 8250.
\frac{15306-840\sqrt{330}}{12^{2}}+16
Add 8250 and 7056 to get 15306.
\frac{15306-840\sqrt{330}}{144}+16
Calculate 12 to the power of 2 and get 144.
\frac{15306-840\sqrt{330}}{144}+\frac{16\times 144}{144}
To add or subtract expressions, expand them to make their denominators the same. Multiply 16 times \frac{144}{144}.
\frac{15306-840\sqrt{330}+16\times 144}{144}
Since \frac{15306-840\sqrt{330}}{144} and \frac{16\times 144}{144} have the same denominator, add them by adding their numerators.
\frac{15306-840\sqrt{330}+2304}{144}
Do the multiplications in 15306-840\sqrt{330}+16\times 144.
\frac{17610-840\sqrt{330}}{144}
Do the calculations in 15306-840\sqrt{330}+2304.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}