Evaluate
-\frac{11571\sqrt{3}}{10}+862.4\approx -1141.755989438
Factor
\frac{7 {(1232 - 1653 \sqrt{3})}}{10} = -1141.7559894379478
Share
Copied to clipboard
2.1\left(\frac{44\times 28}{3}-\frac{29\times 38\sqrt{3}}{2}\right)
Multiply 0.35 and 6 to get 2.1.
2.1\left(\frac{1232}{3}-\frac{29\times 38\sqrt{3}}{2}\right)
Multiply 44 and 28 to get 1232.
2.1\left(\frac{1232}{3}-\frac{1102\sqrt{3}}{2}\right)
Multiply 29 and 38 to get 1102.
2.1\left(\frac{1232}{3}-551\sqrt{3}\right)
Divide 1102\sqrt{3} by 2 to get 551\sqrt{3}.
2.1\times \frac{1232}{3}+2.1\left(-551\sqrt{3}\right)
Use the distributive property to multiply 2.1 by \frac{1232}{3}-551\sqrt{3}.
\frac{21}{10}\times \frac{1232}{3}+2.1\left(-551\sqrt{3}\right)
Convert decimal number 2.1 to fraction \frac{21}{10}.
\frac{21\times 1232}{10\times 3}+2.1\left(-551\sqrt{3}\right)
Multiply \frac{21}{10} times \frac{1232}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{25872}{30}+2.1\left(-551\sqrt{3}\right)
Do the multiplications in the fraction \frac{21\times 1232}{10\times 3}.
\frac{4312}{5}+2.1\left(-551\sqrt{3}\right)
Reduce the fraction \frac{25872}{30} to lowest terms by extracting and canceling out 6.
\frac{4312}{5}-2.1\times 551\sqrt{3}
Multiply 2.1 and -1 to get -2.1.
\frac{4312}{5}-1157.1\sqrt{3}
Multiply -2.1 and 551 to get -1157.1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}