Evaluate
\frac{710000-160000\sqrt{6}}{27}\approx 11780.801524248
Expand
\frac{710000 - 160000 \sqrt{6}}{27} = 11780.801524247834
Share
Copied to clipboard
\frac{\left(400\sqrt{6}-600\right)^{2}}{9^{2}}+10000
To raise \frac{400\sqrt{6}-600}{9} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(400\sqrt{6}-600\right)^{2}}{9^{2}}+\frac{10000\times 9^{2}}{9^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 10000 times \frac{9^{2}}{9^{2}}.
\frac{\left(400\sqrt{6}-600\right)^{2}+10000\times 9^{2}}{9^{2}}
Since \frac{\left(400\sqrt{6}-600\right)^{2}}{9^{2}} and \frac{10000\times 9^{2}}{9^{2}} have the same denominator, add them by adding their numerators.
\frac{160000\left(\sqrt{6}\right)^{2}-480000\sqrt{6}+360000}{9^{2}}+10000
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(400\sqrt{6}-600\right)^{2}.
\frac{160000\times 6-480000\sqrt{6}+360000}{9^{2}}+10000
The square of \sqrt{6} is 6.
\frac{960000-480000\sqrt{6}+360000}{9^{2}}+10000
Multiply 160000 and 6 to get 960000.
\frac{1320000-480000\sqrt{6}}{9^{2}}+10000
Add 960000 and 360000 to get 1320000.
\frac{1320000-480000\sqrt{6}}{81}+10000
Calculate 9 to the power of 2 and get 81.
\frac{1320000-480000\sqrt{6}}{81}+\frac{10000\times 81}{81}
To add or subtract expressions, expand them to make their denominators the same. Multiply 10000 times \frac{81}{81}.
\frac{1320000-480000\sqrt{6}+10000\times 81}{81}
Since \frac{1320000-480000\sqrt{6}}{81} and \frac{10000\times 81}{81} have the same denominator, add them by adding their numerators.
\frac{1320000-480000\sqrt{6}+810000}{81}
Do the multiplications in 1320000-480000\sqrt{6}+10000\times 81.
\frac{2130000-480000\sqrt{6}}{81}
Do the calculations in 1320000-480000\sqrt{6}+810000.
\frac{\left(400\sqrt{6}-600\right)^{2}}{9^{2}}+10000
To raise \frac{400\sqrt{6}-600}{9} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(400\sqrt{6}-600\right)^{2}}{9^{2}}+\frac{10000\times 9^{2}}{9^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 10000 times \frac{9^{2}}{9^{2}}.
\frac{\left(400\sqrt{6}-600\right)^{2}+10000\times 9^{2}}{9^{2}}
Since \frac{\left(400\sqrt{6}-600\right)^{2}}{9^{2}} and \frac{10000\times 9^{2}}{9^{2}} have the same denominator, add them by adding their numerators.
\frac{160000\left(\sqrt{6}\right)^{2}-480000\sqrt{6}+360000}{9^{2}}+10000
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(400\sqrt{6}-600\right)^{2}.
\frac{160000\times 6-480000\sqrt{6}+360000}{9^{2}}+10000
The square of \sqrt{6} is 6.
\frac{960000-480000\sqrt{6}+360000}{9^{2}}+10000
Multiply 160000 and 6 to get 960000.
\frac{1320000-480000\sqrt{6}}{9^{2}}+10000
Add 960000 and 360000 to get 1320000.
\frac{1320000-480000\sqrt{6}}{81}+10000
Calculate 9 to the power of 2 and get 81.
\frac{1320000-480000\sqrt{6}}{81}+\frac{10000\times 81}{81}
To add or subtract expressions, expand them to make their denominators the same. Multiply 10000 times \frac{81}{81}.
\frac{1320000-480000\sqrt{6}+10000\times 81}{81}
Since \frac{1320000-480000\sqrt{6}}{81} and \frac{10000\times 81}{81} have the same denominator, add them by adding their numerators.
\frac{1320000-480000\sqrt{6}+810000}{81}
Do the multiplications in 1320000-480000\sqrt{6}+10000\times 81.
\frac{2130000-480000\sqrt{6}}{81}
Do the calculations in 1320000-480000\sqrt{6}+810000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}