Evaluate
\frac{123125}{3128}\approx 39.362212276
Factor
\frac{197 \cdot 5 ^ {4}}{17 \cdot 23 \cdot 2 ^ {3}} = 39\frac{1133}{3128} = 39.362212276214834
Share
Copied to clipboard
\frac{4.925}{\frac{1}{5}\times 0.6256}
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
\frac{4.925}{\frac{1}{5}\times \frac{391}{625}}
Convert decimal number 0.6256 to fraction \frac{6256}{10000}. Reduce the fraction \frac{6256}{10000} to lowest terms by extracting and canceling out 16.
\frac{4.925}{\frac{1\times 391}{5\times 625}}
Multiply \frac{1}{5} times \frac{391}{625} by multiplying numerator times numerator and denominator times denominator.
\frac{4.925}{\frac{391}{3125}}
Do the multiplications in the fraction \frac{1\times 391}{5\times 625}.
4.925\times \frac{3125}{391}
Divide 4.925 by \frac{391}{3125} by multiplying 4.925 by the reciprocal of \frac{391}{3125}.
\frac{197}{40}\times \frac{3125}{391}
Convert decimal number 4.925 to fraction \frac{4925}{1000}. Reduce the fraction \frac{4925}{1000} to lowest terms by extracting and canceling out 25.
\frac{197\times 3125}{40\times 391}
Multiply \frac{197}{40} times \frac{3125}{391} by multiplying numerator times numerator and denominator times denominator.
\frac{615625}{15640}
Do the multiplications in the fraction \frac{197\times 3125}{40\times 391}.
\frac{123125}{3128}
Reduce the fraction \frac{615625}{15640} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}