Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{4x}{x-3} times \frac{x+3}{x+3}. Multiply \frac{x}{x+3} times \frac{x-3}{x-3}.
\frac{\frac{4x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Since \frac{4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x^{2}+12x-x^{2}+3x}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Do the multiplications in 4x\left(x+3\right)-x\left(x-3\right).
\frac{\frac{3x^{2}+15x}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Combine like terms in 4x^{2}+12x-x^{2}+3x.
\frac{\left(3x^{2}+15x\right)\left(x^{2}-9\right)}{\left(x-3\right)\left(x+3\right)x}
Divide \frac{3x^{2}+15x}{\left(x-3\right)\left(x+3\right)} by \frac{x}{x^{2}-9} by multiplying \frac{3x^{2}+15x}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x}{x^{2}-9}.
\frac{3x\left(x-3\right)\left(x+3\right)\left(x+5\right)}{x\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored.
3\left(x+5\right)
Cancel out x\left(x-3\right)\left(x+3\right) in both numerator and denominator.
3x+15
Expand the expression.
\frac{\frac{4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{4x}{x-3} times \frac{x+3}{x+3}. Multiply \frac{x}{x+3} times \frac{x-3}{x-3}.
\frac{\frac{4x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Since \frac{4x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4x^{2}+12x-x^{2}+3x}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Do the multiplications in 4x\left(x+3\right)-x\left(x-3\right).
\frac{\frac{3x^{2}+15x}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Combine like terms in 4x^{2}+12x-x^{2}+3x.
\frac{\left(3x^{2}+15x\right)\left(x^{2}-9\right)}{\left(x-3\right)\left(x+3\right)x}
Divide \frac{3x^{2}+15x}{\left(x-3\right)\left(x+3\right)} by \frac{x}{x^{2}-9} by multiplying \frac{3x^{2}+15x}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x}{x^{2}-9}.
\frac{3x\left(x-3\right)\left(x+3\right)\left(x+5\right)}{x\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored.
3\left(x+5\right)
Cancel out x\left(x-3\right)\left(x+3\right) in both numerator and denominator.
3x+15
Expand the expression.