Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4k^{2}\right)^{-3}}{\left(n^{2}\right)^{-3}}
To raise \frac{4k^{2}}{n^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4k^{2}\right)^{-3}}{n^{-6}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{4^{-3}\left(k^{2}\right)^{-3}}{n^{-6}}
Expand \left(4k^{2}\right)^{-3}.
\frac{4^{-3}k^{-6}}{n^{-6}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{\frac{1}{64}k^{-6}}{n^{-6}}
Calculate 4 to the power of -3 and get \frac{1}{64}.
\frac{\left(4k^{2}\right)^{-3}}{\left(n^{2}\right)^{-3}}
To raise \frac{4k^{2}}{n^{2}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4k^{2}\right)^{-3}}{n^{-6}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{4^{-3}\left(k^{2}\right)^{-3}}{n^{-6}}
Expand \left(4k^{2}\right)^{-3}.
\frac{4^{-3}k^{-6}}{n^{-6}}
To raise a power to another power, multiply the exponents. Multiply 2 and -3 to get -6.
\frac{\frac{1}{64}k^{-6}}{n^{-6}}
Calculate 4 to the power of -3 and get \frac{1}{64}.