Evaluate
\frac{2a^{2}+3}{3ab}
Expand
\frac{2a^{2}+3}{3ab}
Share
Copied to clipboard
\frac{2a}{3b}+\frac{9-45b^{2}}{9ab}+\frac{10ab}{2a^{2}}
Cancel out 2b in both numerator and denominator.
\frac{2a}{3b}+\frac{9\left(-5b^{2}+1\right)}{9ab}+\frac{10ab}{2a^{2}}
Factor the expressions that are not already factored in \frac{9-45b^{2}}{9ab}.
\frac{2a}{3b}+\frac{-5b^{2}+1}{ab}+\frac{10ab}{2a^{2}}
Cancel out 9 in both numerator and denominator.
\frac{2a}{3b}+\frac{-5b^{2}+1}{ab}+\frac{5b}{a}
Cancel out 2a in both numerator and denominator.
\frac{2aa}{3ab}+\frac{3\left(-5b^{2}+1\right)}{3ab}+\frac{5b}{a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3b and ab is 3ab. Multiply \frac{2a}{3b} times \frac{a}{a}. Multiply \frac{-5b^{2}+1}{ab} times \frac{3}{3}.
\frac{2aa+3\left(-5b^{2}+1\right)}{3ab}+\frac{5b}{a}
Since \frac{2aa}{3ab} and \frac{3\left(-5b^{2}+1\right)}{3ab} have the same denominator, add them by adding their numerators.
\frac{2a^{2}-15b^{2}+3}{3ab}+\frac{5b}{a}
Do the multiplications in 2aa+3\left(-5b^{2}+1\right).
\frac{2a^{2}-15b^{2}+3}{3ab}+\frac{5b\times 3b}{3ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3ab and a is 3ab. Multiply \frac{5b}{a} times \frac{3b}{3b}.
\frac{2a^{2}-15b^{2}+3+5b\times 3b}{3ab}
Since \frac{2a^{2}-15b^{2}+3}{3ab} and \frac{5b\times 3b}{3ab} have the same denominator, add them by adding their numerators.
\frac{2a^{2}-15b^{2}+3+15b^{2}}{3ab}
Do the multiplications in 2a^{2}-15b^{2}+3+5b\times 3b.
\frac{2a^{2}+3}{3ab}
Combine like terms in 2a^{2}-15b^{2}+3+15b^{2}.
\frac{2a}{3b}+\frac{9-45b^{2}}{9ab}+\frac{10ab}{2a^{2}}
Cancel out 2b in both numerator and denominator.
\frac{2a}{3b}+\frac{9\left(-5b^{2}+1\right)}{9ab}+\frac{10ab}{2a^{2}}
Factor the expressions that are not already factored in \frac{9-45b^{2}}{9ab}.
\frac{2a}{3b}+\frac{-5b^{2}+1}{ab}+\frac{10ab}{2a^{2}}
Cancel out 9 in both numerator and denominator.
\frac{2a}{3b}+\frac{-5b^{2}+1}{ab}+\frac{5b}{a}
Cancel out 2a in both numerator and denominator.
\frac{2aa}{3ab}+\frac{3\left(-5b^{2}+1\right)}{3ab}+\frac{5b}{a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3b and ab is 3ab. Multiply \frac{2a}{3b} times \frac{a}{a}. Multiply \frac{-5b^{2}+1}{ab} times \frac{3}{3}.
\frac{2aa+3\left(-5b^{2}+1\right)}{3ab}+\frac{5b}{a}
Since \frac{2aa}{3ab} and \frac{3\left(-5b^{2}+1\right)}{3ab} have the same denominator, add them by adding their numerators.
\frac{2a^{2}-15b^{2}+3}{3ab}+\frac{5b}{a}
Do the multiplications in 2aa+3\left(-5b^{2}+1\right).
\frac{2a^{2}-15b^{2}+3}{3ab}+\frac{5b\times 3b}{3ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3ab and a is 3ab. Multiply \frac{5b}{a} times \frac{3b}{3b}.
\frac{2a^{2}-15b^{2}+3+5b\times 3b}{3ab}
Since \frac{2a^{2}-15b^{2}+3}{3ab} and \frac{5b\times 3b}{3ab} have the same denominator, add them by adding their numerators.
\frac{2a^{2}-15b^{2}+3+15b^{2}}{3ab}
Do the multiplications in 2a^{2}-15b^{2}+3+5b\times 3b.
\frac{2a^{2}+3}{3ab}
Combine like terms in 2a^{2}-15b^{2}+3+15b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}