Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2a}{3b}+\frac{9-45b^{2}}{9ab}+\frac{10ab}{2a^{2}}
Cancel out 2b in both numerator and denominator.
\frac{2a}{3b}+\frac{9\left(-5b^{2}+1\right)}{9ab}+\frac{10ab}{2a^{2}}
Factor the expressions that are not already factored in \frac{9-45b^{2}}{9ab}.
\frac{2a}{3b}+\frac{-5b^{2}+1}{ab}+\frac{10ab}{2a^{2}}
Cancel out 9 in both numerator and denominator.
\frac{2a}{3b}+\frac{-5b^{2}+1}{ab}+\frac{5b}{a}
Cancel out 2a in both numerator and denominator.
\frac{2aa}{3ab}+\frac{3\left(-5b^{2}+1\right)}{3ab}+\frac{5b}{a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3b and ab is 3ab. Multiply \frac{2a}{3b} times \frac{a}{a}. Multiply \frac{-5b^{2}+1}{ab} times \frac{3}{3}.
\frac{2aa+3\left(-5b^{2}+1\right)}{3ab}+\frac{5b}{a}
Since \frac{2aa}{3ab} and \frac{3\left(-5b^{2}+1\right)}{3ab} have the same denominator, add them by adding their numerators.
\frac{2a^{2}-15b^{2}+3}{3ab}+\frac{5b}{a}
Do the multiplications in 2aa+3\left(-5b^{2}+1\right).
\frac{2a^{2}-15b^{2}+3}{3ab}+\frac{5b\times 3b}{3ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3ab and a is 3ab. Multiply \frac{5b}{a} times \frac{3b}{3b}.
\frac{2a^{2}-15b^{2}+3+5b\times 3b}{3ab}
Since \frac{2a^{2}-15b^{2}+3}{3ab} and \frac{5b\times 3b}{3ab} have the same denominator, add them by adding their numerators.
\frac{2a^{2}-15b^{2}+3+15b^{2}}{3ab}
Do the multiplications in 2a^{2}-15b^{2}+3+5b\times 3b.
\frac{2a^{2}+3}{3ab}
Combine like terms in 2a^{2}-15b^{2}+3+15b^{2}.
\frac{2a}{3b}+\frac{9-45b^{2}}{9ab}+\frac{10ab}{2a^{2}}
Cancel out 2b in both numerator and denominator.
\frac{2a}{3b}+\frac{9\left(-5b^{2}+1\right)}{9ab}+\frac{10ab}{2a^{2}}
Factor the expressions that are not already factored in \frac{9-45b^{2}}{9ab}.
\frac{2a}{3b}+\frac{-5b^{2}+1}{ab}+\frac{10ab}{2a^{2}}
Cancel out 9 in both numerator and denominator.
\frac{2a}{3b}+\frac{-5b^{2}+1}{ab}+\frac{5b}{a}
Cancel out 2a in both numerator and denominator.
\frac{2aa}{3ab}+\frac{3\left(-5b^{2}+1\right)}{3ab}+\frac{5b}{a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3b and ab is 3ab. Multiply \frac{2a}{3b} times \frac{a}{a}. Multiply \frac{-5b^{2}+1}{ab} times \frac{3}{3}.
\frac{2aa+3\left(-5b^{2}+1\right)}{3ab}+\frac{5b}{a}
Since \frac{2aa}{3ab} and \frac{3\left(-5b^{2}+1\right)}{3ab} have the same denominator, add them by adding their numerators.
\frac{2a^{2}-15b^{2}+3}{3ab}+\frac{5b}{a}
Do the multiplications in 2aa+3\left(-5b^{2}+1\right).
\frac{2a^{2}-15b^{2}+3}{3ab}+\frac{5b\times 3b}{3ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3ab and a is 3ab. Multiply \frac{5b}{a} times \frac{3b}{3b}.
\frac{2a^{2}-15b^{2}+3+5b\times 3b}{3ab}
Since \frac{2a^{2}-15b^{2}+3}{3ab} and \frac{5b\times 3b}{3ab} have the same denominator, add them by adding their numerators.
\frac{2a^{2}-15b^{2}+3+15b^{2}}{3ab}
Do the multiplications in 2a^{2}-15b^{2}+3+5b\times 3b.
\frac{2a^{2}+3}{3ab}
Combine like terms in 2a^{2}-15b^{2}+3+15b^{2}.