Evaluate
-\frac{3x-5}{x\left(x-3\right)}
Expand
-\frac{3x-5}{x\left(x-3\right)}
Graph
Share
Copied to clipboard
\left(\frac{4}{x-3}+\frac{3\left(x-3\right)}{x-3}\right)\left(\frac{10}{x\left(x-2\right)}+\frac{4}{x}-\frac{5}{x-2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-3}{x-3}.
\frac{4+3\left(x-3\right)}{x-3}\left(\frac{10}{x\left(x-2\right)}+\frac{4}{x}-\frac{5}{x-2}\right)
Since \frac{4}{x-3} and \frac{3\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{4+3x-9}{x-3}\left(\frac{10}{x\left(x-2\right)}+\frac{4}{x}-\frac{5}{x-2}\right)
Do the multiplications in 4+3\left(x-3\right).
\frac{-5+3x}{x-3}\left(\frac{10}{x\left(x-2\right)}+\frac{4}{x}-\frac{5}{x-2}\right)
Combine like terms in 4+3x-9.
\frac{-5+3x}{x-3}\left(\frac{10}{x\left(x-2\right)}+\frac{4\left(x-2\right)}{x\left(x-2\right)}-\frac{5}{x-2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x is x\left(x-2\right). Multiply \frac{4}{x} times \frac{x-2}{x-2}.
\frac{-5+3x}{x-3}\left(\frac{10+4\left(x-2\right)}{x\left(x-2\right)}-\frac{5}{x-2}\right)
Since \frac{10}{x\left(x-2\right)} and \frac{4\left(x-2\right)}{x\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{-5+3x}{x-3}\left(\frac{10+4x-8}{x\left(x-2\right)}-\frac{5}{x-2}\right)
Do the multiplications in 10+4\left(x-2\right).
\frac{-5+3x}{x-3}\left(\frac{2+4x}{x\left(x-2\right)}-\frac{5}{x-2}\right)
Combine like terms in 10+4x-8.
\frac{-5+3x}{x-3}\left(\frac{2+4x}{x\left(x-2\right)}-\frac{5x}{x\left(x-2\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x-2 is x\left(x-2\right). Multiply \frac{5}{x-2} times \frac{x}{x}.
\frac{-5+3x}{x-3}\times \frac{2+4x-5x}{x\left(x-2\right)}
Since \frac{2+4x}{x\left(x-2\right)} and \frac{5x}{x\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-5+3x}{x-3}\times \frac{2-x}{x\left(x-2\right)}
Combine like terms in 2+4x-5x.
\frac{-5+3x}{x-3}\times \frac{-\left(x-2\right)}{x\left(x-2\right)}
Extract the negative sign in 2-x.
\frac{-5+3x}{x-3}\times \frac{-1}{x}
Cancel out x-2 in both numerator and denominator.
\frac{\left(-5+3x\right)\left(-1\right)}{\left(x-3\right)x}
Multiply \frac{-5+3x}{x-3} times \frac{-1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{5-3x}{\left(x-3\right)x}
Use the distributive property to multiply -5+3x by -1.
\frac{5-3x}{x^{2}-3x}
Use the distributive property to multiply x-3 by x.
\left(\frac{4}{x-3}+\frac{3\left(x-3\right)}{x-3}\right)\left(\frac{10}{x\left(x-2\right)}+\frac{4}{x}-\frac{5}{x-2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x-3}{x-3}.
\frac{4+3\left(x-3\right)}{x-3}\left(\frac{10}{x\left(x-2\right)}+\frac{4}{x}-\frac{5}{x-2}\right)
Since \frac{4}{x-3} and \frac{3\left(x-3\right)}{x-3} have the same denominator, add them by adding their numerators.
\frac{4+3x-9}{x-3}\left(\frac{10}{x\left(x-2\right)}+\frac{4}{x}-\frac{5}{x-2}\right)
Do the multiplications in 4+3\left(x-3\right).
\frac{-5+3x}{x-3}\left(\frac{10}{x\left(x-2\right)}+\frac{4}{x}-\frac{5}{x-2}\right)
Combine like terms in 4+3x-9.
\frac{-5+3x}{x-3}\left(\frac{10}{x\left(x-2\right)}+\frac{4\left(x-2\right)}{x\left(x-2\right)}-\frac{5}{x-2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x is x\left(x-2\right). Multiply \frac{4}{x} times \frac{x-2}{x-2}.
\frac{-5+3x}{x-3}\left(\frac{10+4\left(x-2\right)}{x\left(x-2\right)}-\frac{5}{x-2}\right)
Since \frac{10}{x\left(x-2\right)} and \frac{4\left(x-2\right)}{x\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{-5+3x}{x-3}\left(\frac{10+4x-8}{x\left(x-2\right)}-\frac{5}{x-2}\right)
Do the multiplications in 10+4\left(x-2\right).
\frac{-5+3x}{x-3}\left(\frac{2+4x}{x\left(x-2\right)}-\frac{5}{x-2}\right)
Combine like terms in 10+4x-8.
\frac{-5+3x}{x-3}\left(\frac{2+4x}{x\left(x-2\right)}-\frac{5x}{x\left(x-2\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x-2 is x\left(x-2\right). Multiply \frac{5}{x-2} times \frac{x}{x}.
\frac{-5+3x}{x-3}\times \frac{2+4x-5x}{x\left(x-2\right)}
Since \frac{2+4x}{x\left(x-2\right)} and \frac{5x}{x\left(x-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-5+3x}{x-3}\times \frac{2-x}{x\left(x-2\right)}
Combine like terms in 2+4x-5x.
\frac{-5+3x}{x-3}\times \frac{-\left(x-2\right)}{x\left(x-2\right)}
Extract the negative sign in 2-x.
\frac{-5+3x}{x-3}\times \frac{-1}{x}
Cancel out x-2 in both numerator and denominator.
\frac{\left(-5+3x\right)\left(-1\right)}{\left(x-3\right)x}
Multiply \frac{-5+3x}{x-3} times \frac{-1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{5-3x}{\left(x-3\right)x}
Use the distributive property to multiply -5+3x by -1.
\frac{5-3x}{x^{2}-3x}
Use the distributive property to multiply x-3 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}