Evaluate
2.145
Factor
\frac{3 \cdot 11 \cdot 13}{2 ^ {3} \cdot 5 ^ {2}} = 2\frac{29}{200} = 2.145
Share
Copied to clipboard
\frac{32}{40}-\frac{5}{40}+1.6-0.13
Least common multiple of 5 and 8 is 40. Convert \frac{4}{5} and \frac{1}{8} to fractions with denominator 40.
\frac{32-5}{40}+1.6-0.13
Since \frac{32}{40} and \frac{5}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{27}{40}+1.6-0.13
Subtract 5 from 32 to get 27.
\frac{27}{40}+\frac{8}{5}-0.13
Convert decimal number 1.6 to fraction \frac{16}{10}. Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
\frac{27}{40}+\frac{64}{40}-0.13
Least common multiple of 40 and 5 is 40. Convert \frac{27}{40} and \frac{8}{5} to fractions with denominator 40.
\frac{27+64}{40}-0.13
Since \frac{27}{40} and \frac{64}{40} have the same denominator, add them by adding their numerators.
\frac{91}{40}-0.13
Add 27 and 64 to get 91.
\frac{91}{40}-\frac{13}{100}
Convert decimal number 0.13 to fraction \frac{13}{100}.
\frac{455}{200}-\frac{26}{200}
Least common multiple of 40 and 100 is 200. Convert \frac{91}{40} and \frac{13}{100} to fractions with denominator 200.
\frac{455-26}{200}
Since \frac{455}{200} and \frac{26}{200} have the same denominator, subtract them by subtracting their numerators.
\frac{429}{200}
Subtract 26 from 455 to get 429.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}