Evaluate
\frac{1}{5}=0.2
Factor
\frac{1}{5} = 0.2
Share
Copied to clipboard
\frac{\frac{4}{5}-\frac{1\times 1}{5\times 4}}{\frac{15}{4}}
Multiply \frac{1}{5} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4}{5}-\frac{1}{20}}{\frac{15}{4}}
Do the multiplications in the fraction \frac{1\times 1}{5\times 4}.
\frac{\frac{16}{20}-\frac{1}{20}}{\frac{15}{4}}
Least common multiple of 5 and 20 is 20. Convert \frac{4}{5} and \frac{1}{20} to fractions with denominator 20.
\frac{\frac{16-1}{20}}{\frac{15}{4}}
Since \frac{16}{20} and \frac{1}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{15}{20}}{\frac{15}{4}}
Subtract 1 from 16 to get 15.
\frac{\frac{3}{4}}{\frac{15}{4}}
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
\frac{3}{4}\times \frac{4}{15}
Divide \frac{3}{4} by \frac{15}{4} by multiplying \frac{3}{4} by the reciprocal of \frac{15}{4}.
\frac{3\times 4}{4\times 15}
Multiply \frac{3}{4} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{15}
Cancel out 4 in both numerator and denominator.
\frac{1}{5}
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}