Evaluate
\frac{379}{252}\approx 1.503968254
Factor
\frac{379}{2 ^ {2} \cdot 3 ^ {2} \cdot 7} = 1\frac{127}{252} = 1.503968253968254
Share
Copied to clipboard
\frac{8}{6}-\frac{1}{6}-\left(-\left(\frac{1}{7}+\frac{2}{6}\right)+\frac{5}{4}\times \frac{1}{9}\right)
Least common multiple of 3 and 6 is 6. Convert \frac{4}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{8-1}{6}-\left(-\left(\frac{1}{7}+\frac{2}{6}\right)+\frac{5}{4}\times \frac{1}{9}\right)
Since \frac{8}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{6}-\left(-\left(\frac{1}{7}+\frac{2}{6}\right)+\frac{5}{4}\times \frac{1}{9}\right)
Subtract 1 from 8 to get 7.
\frac{7}{6}-\left(-\left(\frac{1}{7}+\frac{1}{3}\right)+\frac{5}{4}\times \frac{1}{9}\right)
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{7}{6}-\left(-\left(\frac{3}{21}+\frac{7}{21}\right)+\frac{5}{4}\times \frac{1}{9}\right)
Least common multiple of 7 and 3 is 21. Convert \frac{1}{7} and \frac{1}{3} to fractions with denominator 21.
\frac{7}{6}-\left(-\frac{3+7}{21}+\frac{5}{4}\times \frac{1}{9}\right)
Since \frac{3}{21} and \frac{7}{21} have the same denominator, add them by adding their numerators.
\frac{7}{6}-\left(-\frac{10}{21}+\frac{5}{4}\times \frac{1}{9}\right)
Add 3 and 7 to get 10.
\frac{7}{6}-\left(-\frac{10}{21}+\frac{5\times 1}{4\times 9}\right)
Multiply \frac{5}{4} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{7}{6}-\left(-\frac{10}{21}+\frac{5}{36}\right)
Do the multiplications in the fraction \frac{5\times 1}{4\times 9}.
\frac{7}{6}-\left(-\frac{120}{252}+\frac{35}{252}\right)
Least common multiple of 21 and 36 is 252. Convert -\frac{10}{21} and \frac{5}{36} to fractions with denominator 252.
\frac{7}{6}-\frac{-120+35}{252}
Since -\frac{120}{252} and \frac{35}{252} have the same denominator, add them by adding their numerators.
\frac{7}{6}-\left(-\frac{85}{252}\right)
Add -120 and 35 to get -85.
\frac{7}{6}+\frac{85}{252}
The opposite of -\frac{85}{252} is \frac{85}{252}.
\frac{294}{252}+\frac{85}{252}
Least common multiple of 6 and 252 is 252. Convert \frac{7}{6} and \frac{85}{252} to fractions with denominator 252.
\frac{294+85}{252}
Since \frac{294}{252} and \frac{85}{252} have the same denominator, add them by adding their numerators.
\frac{379}{252}
Add 294 and 85 to get 379.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}