Solve for x
x\in \left(-\infty,-\frac{2}{3}\right)\cup \left(-\frac{1}{3},\infty\right)
Graph
Share
Copied to clipboard
\frac{16}{9}+\frac{16}{3}x+4x^{2}>\frac{1}{3}-\left(2x+1\right)\left(2x+\frac{1}{3}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{4}{3}+2x\right)^{2}.
\frac{16}{9}+\frac{16}{3}x+4x^{2}>\frac{1}{3}-\left(4x^{2}+\frac{8}{3}x+\frac{1}{3}\right)
Use the distributive property to multiply 2x+1 by 2x+\frac{1}{3} and combine like terms.
\frac{16}{9}+\frac{16}{3}x+4x^{2}>\frac{1}{3}-4x^{2}-\frac{8}{3}x-\frac{1}{3}
To find the opposite of 4x^{2}+\frac{8}{3}x+\frac{1}{3}, find the opposite of each term.
\frac{16}{9}+\frac{16}{3}x+4x^{2}>-4x^{2}-\frac{8}{3}x
Subtract \frac{1}{3} from \frac{1}{3} to get 0.
\frac{16}{9}+\frac{16}{3}x+4x^{2}+4x^{2}>-\frac{8}{3}x
Add 4x^{2} to both sides.
\frac{16}{9}+\frac{16}{3}x+8x^{2}>-\frac{8}{3}x
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
\frac{16}{9}+\frac{16}{3}x+8x^{2}+\frac{8}{3}x>0
Add \frac{8}{3}x to both sides.
\frac{16}{9}+8x+8x^{2}>0
Combine \frac{16}{3}x and \frac{8}{3}x to get 8x.
\frac{16}{9}+8x+8x^{2}=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 8\times \frac{16}{9}}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, 8 for b, and \frac{16}{9} for c in the quadratic formula.
x=\frac{-8±\frac{8}{3}}{16}
Do the calculations.
x=-\frac{1}{3} x=-\frac{2}{3}
Solve the equation x=\frac{-8±\frac{8}{3}}{16} when ± is plus and when ± is minus.
8\left(x+\frac{1}{3}\right)\left(x+\frac{2}{3}\right)>0
Rewrite the inequality by using the obtained solutions.
x+\frac{1}{3}<0 x+\frac{2}{3}<0
For the product to be positive, x+\frac{1}{3} and x+\frac{2}{3} have to be both negative or both positive. Consider the case when x+\frac{1}{3} and x+\frac{2}{3} are both negative.
x<-\frac{2}{3}
The solution satisfying both inequalities is x<-\frac{2}{3}.
x+\frac{2}{3}>0 x+\frac{1}{3}>0
Consider the case when x+\frac{1}{3} and x+\frac{2}{3} are both positive.
x>-\frac{1}{3}
The solution satisfying both inequalities is x>-\frac{1}{3}.
x<-\frac{2}{3}\text{; }x>-\frac{1}{3}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}