Evaluate
3x^{2}+\frac{5x}{3}+1
Expand
3x^{2}+\frac{5x}{3}+1
Graph
Share
Copied to clipboard
\left(\frac{4\times 3}{84x^{3}}+\frac{5\times 4x}{84x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 28x^{3} and 21x^{2} is 84x^{3}. Multiply \frac{4}{28x^{3}} times \frac{3}{3}. Multiply \frac{5}{21x^{2}} times \frac{4x}{4x}.
\left(\frac{4\times 3+5\times 4x}{84x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
Since \frac{4\times 3}{84x^{3}} and \frac{5\times 4x}{84x^{3}} have the same denominator, add them by adding their numerators.
\left(\frac{12+20x}{84x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
Do the multiplications in 4\times 3+5\times 4x.
\left(\frac{4\left(5x+3\right)}{84x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
Factor the expressions that are not already factored in \frac{12+20x}{84x^{3}}.
\left(\frac{5x+3}{21x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
Cancel out 4 in both numerator and denominator.
\left(\frac{5x+3}{21x^{3}}+\frac{3\times 3x^{2}}{21x^{3}}\right)\times 7x^{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 21x^{3} and 7x is 21x^{3}. Multiply \frac{3}{7x} times \frac{3x^{2}}{3x^{2}}.
\frac{5x+3+3\times 3x^{2}}{21x^{3}}\times 7x^{3}
Since \frac{5x+3}{21x^{3}} and \frac{3\times 3x^{2}}{21x^{3}} have the same denominator, add them by adding their numerators.
\frac{5x+3+9x^{2}}{21x^{3}}\times 7x^{3}
Do the multiplications in 5x+3+3\times 3x^{2}.
\frac{\left(5x+3+9x^{2}\right)\times 7}{21x^{3}}x^{3}
Express \frac{5x+3+9x^{2}}{21x^{3}}\times 7 as a single fraction.
\frac{9x^{2}+5x+3}{3x^{3}}x^{3}
Cancel out 7 in both numerator and denominator.
\frac{\left(9x^{2}+5x+3\right)x^{3}}{3x^{3}}
Express \frac{9x^{2}+5x+3}{3x^{3}}x^{3} as a single fraction.
\frac{9x^{2}+5x+3}{3}
Cancel out x^{3} in both numerator and denominator.
\left(\frac{4\times 3}{84x^{3}}+\frac{5\times 4x}{84x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 28x^{3} and 21x^{2} is 84x^{3}. Multiply \frac{4}{28x^{3}} times \frac{3}{3}. Multiply \frac{5}{21x^{2}} times \frac{4x}{4x}.
\left(\frac{4\times 3+5\times 4x}{84x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
Since \frac{4\times 3}{84x^{3}} and \frac{5\times 4x}{84x^{3}} have the same denominator, add them by adding their numerators.
\left(\frac{12+20x}{84x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
Do the multiplications in 4\times 3+5\times 4x.
\left(\frac{4\left(5x+3\right)}{84x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
Factor the expressions that are not already factored in \frac{12+20x}{84x^{3}}.
\left(\frac{5x+3}{21x^{3}}+\frac{3}{7x}\right)\times 7x^{3}
Cancel out 4 in both numerator and denominator.
\left(\frac{5x+3}{21x^{3}}+\frac{3\times 3x^{2}}{21x^{3}}\right)\times 7x^{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 21x^{3} and 7x is 21x^{3}. Multiply \frac{3}{7x} times \frac{3x^{2}}{3x^{2}}.
\frac{5x+3+3\times 3x^{2}}{21x^{3}}\times 7x^{3}
Since \frac{5x+3}{21x^{3}} and \frac{3\times 3x^{2}}{21x^{3}} have the same denominator, add them by adding their numerators.
\frac{5x+3+9x^{2}}{21x^{3}}\times 7x^{3}
Do the multiplications in 5x+3+3\times 3x^{2}.
\frac{\left(5x+3+9x^{2}\right)\times 7}{21x^{3}}x^{3}
Express \frac{5x+3+9x^{2}}{21x^{3}}\times 7 as a single fraction.
\frac{9x^{2}+5x+3}{3x^{3}}x^{3}
Cancel out 7 in both numerator and denominator.
\frac{\left(9x^{2}+5x+3\right)x^{3}}{3x^{3}}
Express \frac{9x^{2}+5x+3}{3x^{3}}x^{3} as a single fraction.
\frac{9x^{2}+5x+3}{3}
Cancel out x^{3} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}