Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{4}{2z+1}+\frac{2}{\left(-z+1\right)\left(2z+1\right)}\right)\times \frac{2z+3z+1}{3+z-2z^{2}}
Factor 1+z-2z^{2}.
\left(\frac{4\left(-z+1\right)}{\left(-z+1\right)\left(2z+1\right)}+\frac{2}{\left(-z+1\right)\left(2z+1\right)}\right)\times \frac{2z+3z+1}{3+z-2z^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2z+1 and \left(-z+1\right)\left(2z+1\right) is \left(-z+1\right)\left(2z+1\right). Multiply \frac{4}{2z+1} times \frac{-z+1}{-z+1}.
\frac{4\left(-z+1\right)+2}{\left(-z+1\right)\left(2z+1\right)}\times \frac{2z+3z+1}{3+z-2z^{2}}
Since \frac{4\left(-z+1\right)}{\left(-z+1\right)\left(2z+1\right)} and \frac{2}{\left(-z+1\right)\left(2z+1\right)} have the same denominator, add them by adding their numerators.
\frac{-4z+4+2}{\left(-z+1\right)\left(2z+1\right)}\times \frac{2z+3z+1}{3+z-2z^{2}}
Do the multiplications in 4\left(-z+1\right)+2.
\frac{-4z+6}{\left(-z+1\right)\left(2z+1\right)}\times \frac{2z+3z+1}{3+z-2z^{2}}
Combine like terms in -4z+4+2.
\frac{-4z+6}{\left(-z+1\right)\left(2z+1\right)}\times \frac{5z+1}{3+z-2z^{2}}
Combine 2z and 3z to get 5z.
\frac{\left(-4z+6\right)\left(5z+1\right)}{\left(-z+1\right)\left(2z+1\right)\left(3+z-2z^{2}\right)}
Multiply \frac{-4z+6}{\left(-z+1\right)\left(2z+1\right)} times \frac{5z+1}{3+z-2z^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(-2z+3\right)\left(5z+1\right)}{\left(-z-1\right)\left(2z-3\right)\left(-z+1\right)\left(2z+1\right)}
Factor the expressions that are not already factored.
\frac{-2\left(2z-3\right)\left(5z+1\right)}{\left(-z-1\right)\left(2z-3\right)\left(-z+1\right)\left(2z+1\right)}
Extract the negative sign in 3-2z.
\frac{-2\left(5z+1\right)}{\left(-z-1\right)\left(-z+1\right)\left(2z+1\right)}
Cancel out 2z-3 in both numerator and denominator.
\frac{-10z-2}{2z^{3}+z^{2}-2z-1}
Expand the expression.
\left(\frac{4}{2z+1}+\frac{2}{\left(-z+1\right)\left(2z+1\right)}\right)\times \frac{2z+3z+1}{3+z-2z^{2}}
Factor 1+z-2z^{2}.
\left(\frac{4\left(-z+1\right)}{\left(-z+1\right)\left(2z+1\right)}+\frac{2}{\left(-z+1\right)\left(2z+1\right)}\right)\times \frac{2z+3z+1}{3+z-2z^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2z+1 and \left(-z+1\right)\left(2z+1\right) is \left(-z+1\right)\left(2z+1\right). Multiply \frac{4}{2z+1} times \frac{-z+1}{-z+1}.
\frac{4\left(-z+1\right)+2}{\left(-z+1\right)\left(2z+1\right)}\times \frac{2z+3z+1}{3+z-2z^{2}}
Since \frac{4\left(-z+1\right)}{\left(-z+1\right)\left(2z+1\right)} and \frac{2}{\left(-z+1\right)\left(2z+1\right)} have the same denominator, add them by adding their numerators.
\frac{-4z+4+2}{\left(-z+1\right)\left(2z+1\right)}\times \frac{2z+3z+1}{3+z-2z^{2}}
Do the multiplications in 4\left(-z+1\right)+2.
\frac{-4z+6}{\left(-z+1\right)\left(2z+1\right)}\times \frac{2z+3z+1}{3+z-2z^{2}}
Combine like terms in -4z+4+2.
\frac{-4z+6}{\left(-z+1\right)\left(2z+1\right)}\times \frac{5z+1}{3+z-2z^{2}}
Combine 2z and 3z to get 5z.
\frac{\left(-4z+6\right)\left(5z+1\right)}{\left(-z+1\right)\left(2z+1\right)\left(3+z-2z^{2}\right)}
Multiply \frac{-4z+6}{\left(-z+1\right)\left(2z+1\right)} times \frac{5z+1}{3+z-2z^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(-2z+3\right)\left(5z+1\right)}{\left(-z-1\right)\left(2z-3\right)\left(-z+1\right)\left(2z+1\right)}
Factor the expressions that are not already factored.
\frac{-2\left(2z-3\right)\left(5z+1\right)}{\left(-z-1\right)\left(2z-3\right)\left(-z+1\right)\left(2z+1\right)}
Extract the negative sign in 3-2z.
\frac{-2\left(5z+1\right)}{\left(-z-1\right)\left(-z+1\right)\left(2z+1\right)}
Cancel out 2z-3 in both numerator and denominator.
\frac{-10z-2}{2z^{3}+z^{2}-2z-1}
Expand the expression.